Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (5): 625-632    DOI: 10.11902/1005.4537.2020.255
Current Issue | Archive | Adv Search |
Corrosion Behavior of 316L Stainless Steel in Simulated Oilfield Wastewater
ZHANG Longhua1, LI Changjun2, PAN Lei2, HAN Sike1, WANG Xin1, CUI Zhongyu1()
1.School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
2.Xinjiang Baomo Environment Engineering Co. Ltd. , Karamay 834000, China
Download:  HTML  PDF(4434KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of S2- concentration on the corrosion behavior of 316L stainless steel in a simulated oilfield wastewater was studied by means of electrochemical technique and X-ray photoelectron spectroscopy (XPS). The results show that the existence of S2- can accelerate the corrosion of 316L, and with the increase of S2- concentration, its corrosion tendency increases and the corrosion resistance decreases. XPS results demonstrate that FeS presents in the passive film of 316L stainless steel, which hinders the further growth of the film. Moreover, the outer layer of passive film is loose, therewith the protection performance of the film is deteriorated.

Key words:  316L stainless steel      oilfield wastewater      sulfide      passive film     
Received:  09 December 2020     
ZTFLH:  TG172  
Fund: Key R&D Program Public Welfare Special Fund of Shandong Province(2019GHY112050)
Corresponding Authors:  CUI Zhongyu     E-mail:  cuizhongyu@ouc.edu.cn
About author:  CUI Zhongyu, E-mail: cuizhongyu@ouc.edu.cn

Cite this article: 

ZHANG Longhua, LI Changjun, PAN Lei, HAN Sike, WANG Xin, CUI Zhongyu. Corrosion Behavior of 316L Stainless Steel in Simulated Oilfield Wastewater. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 625-632.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.255     OR     https://www.jcscp.org/EN/Y2021/V41/I5/625

Fig.1  Potentiodynamic cyclic polarization curves of 316L stainless steel in simulated oilfield wastewater with different concentration of sulfide
Fig.2  I-t curves of 316L stainless steel at -0.1 VSCE (a), -0.2 VSCE (b), -0.3 VSCE (c) and -0.4 VSCE (d) under solutions of various sulfur concentrations
Fig.3  Steady-state current density versus applied potential plot with different concentration of S2-
Fig.4  Nyquist (a, c, e, g) and Bode (b, d, f, h) plots of potential variation under 0 mg/L (a, b), 50 mg/L (c, d), 100 mg/L (e, f) and 200 mg/L (g, h) S2- concentrations
Fig.5  Equivalent circuit model for interpreting the impedance spectra of 316L stainless steel passive film: (a) Model 1, (b) Model 2
E / VSCESulfide concentration / mg·L-1Rs / Ω·cm2Q1 / 10-4 Ω-1·cm-2·snnR1 / Ω·cm2W / Ω·cm2·s-0.52 / 10-3
-0.106.87.670.8279.2---2.32
506.11.220.841.1148.23.82
1006.61.110.861.9144.72.62
2005.31.360.780.687.52.56
-0.206.96.120.8771.1---2.13
505.31.310.861.7147.73.98
1007.31.290.821.2134.51.18
2006.31.510.790.594.22.41
-0.30------------------
505.11.750.831.2157.81.26
1007.31.410.940.9182.51.90
2007.41.970.920.4167.81.11
-0.40------------------
504.91.610.8942.7---1.05
1004.33.310.8537.3---1.06
2004.84.310.8924.9---1.61
Table 1  Fitting parameters of values equivalent circuit model
Fig.6  XPS spectra of the main elements in the passive film formed by 316L strainless steel at -0.1 VSCE potential: (a) with a sulfide concentration of 0 mg/L: (a1) Cr2p3/2, (a2) Fe2p3/2, (a3) O1s, (b) with a sulfide concentration of 200 mg/L: (b1) Cr2p3/2, (b2) Fe2p3/2, (b3) O1s, (b4) S2P3/2
1 Chail G, Kangas P. Super and hyper duplex stainless steels: Structures, properties and applications [J]. Proc. Struct. Integr., 2016, 2: 1755
2 Wan H X, Yang X J, Liu Z Y, et al. Pitting behavior of L415 pipeline steel in simulated leaching liquid environment [J]. J. Mater. Eng. Perform., 2017, 26: 715
3 Peng W S, Hou J, Ding K K, et al. Corrosion behavior of 304 stainless steel in deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 145
彭文山, 侯健, 丁康康等. 深海环境中304不锈钢腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 145
4 Zhang H, Du N, Zhou W J, et al. Effect of Fe3+ on pitting corrosion of stainless steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 517
张浩, 杜楠, 周文杰等. 模拟海水溶液中Fe3+对不锈钢点蚀的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 517
5 Li Y, Li C Y, Chen X, et al. Gray relationship analysis on corrosion behavior of super 13Cr stainless steel in environments of marine oil and gas field [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 471
李洋, 李承媛, 陈旭等. 超级13Cr不锈钢在海洋油气田环境中腐蚀行为灰关联分析 [J]. 中国腐蚀与防护学报, 2018, 38: 471
6 Li F S, An M Z, Liu G Z, et al. Effects of sulfidation of passive film in the presence of SRB on the pitting corrosion behaviors of stainless steels [J]. Mater. Chem. Phys., 2009, 113: 971
7 Payne M K, Stolt M H. Understanding sulfide distribution in subaqueous soil systems in southern New England, USA [J]. Geoderma, 2017, 308: 207
8 Webb E G, Paik C H, Alkire R C. Local detection of dissolved sulfur species from inclusions in stainless steel using Ag microelectrode [J]. Electrochem. Solid-State Lett., 2001, 4: B15
9 Ding J H, Lei Z, Lu M X, et al. The electrochemical behaviour of 316L austenitic stainless steel in Cl- containing environment under different H2S partial pressures [J]. Appl. Surf. Sci., 2014, 289: 33
10 Wiener M S, Salas B V, Quintero-Núñez M, et al. Effect of H2S on corrosion in polluted waters: A review [J]. Corros. Eng. Sci. Technol., 2006, 41: 221
11 Mischler S, Vogel A, Mathieu H J, et al. The chemical composition of the passive film on Fe-24Cr and Fe-24Cr-11Mo studied by AES, XPS and SIMS [J]. Corros. Sci., 1991, 32: 925
12 Guo Q, Liu J H, Yu M, et al. Effect of passive film on mechanical properties of martensitic stainless steel 15-5PH in a neutral NaCl solution [J]. Appl. Surf. Sci., 2015, 327: 313
13 Hu Y T, Dong P F, Jiang L, et al. Corrosion behavior of riveted joints of TC4 Ti-alloy and 316L stainless steel in simulated marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 167
胡玉婷, 董鹏飞, 蒋立等. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 167
14 Lei X W, Wang H Y, Mao F X, et al. Electrochemical behaviour of martensitic stainless steel after immersion in a H2S-saturated solution [J]. Corros. Sci., 2018, 131: 164
15 Chasse K R, Singh P M. Corrosion study of super ferritic stainless steel UNS S44660 (26Cr-3Ni-3Mo) and several other stainless steel grades (UNS S31603, S32101, and S32205) in caustic solution containing sodium sulfide [J]. Metall. Mater. Trans., 2013, 44A: 5039
16 Macdonald D D, Sun A. An electrochemical impedance spectroscopic study of the passive state on Alloy-22 [J]. Electrochim. Acta, 2006, 51: 1767
17 Lu P, Sharifi-Asl S, Kursten B, et al. The irreversibility of the passive state of carbon steel in the alkaline concrete pore solution under simulated anoxic conditions [J]. J. Electrochem. Soc., 2015, 162: C572
18 Mesquita T J, Chauveau E, Mantel M, et al. A XPS study of the Mo effect on passivation behaviors for highly controlled stainless steels in neutral and alkaline conditions [J]. Appl. Surf. Sci., 2013, 270: 90
19 Luo H, Dong C F, Li X G, et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride [J]. Electrochim. Acta, 2012, 64: 211
20 Mohammadi M, Choudhary L, Gadala I M, et al. Electrochemical and passive layer characterizations of 304L, 316L, and duplex 2205 stainless steels in thiosulfate gold leaching solutions [J]. J. Electrochem. Soc., 2016, 163: C883
21 Betova I, Bojinov M, Hyökyvirta O, et al. Effect of sulphide on the corrosion behaviour of AISI 316L stainless steel and its constituent elements in simulated Kraft digester conditions [J]. Corros. Sci., 2010, 52: 1499
22 Wallinder D, Pan J, Leygraf C, et al. Eis and XPS study of surface modification of 316LVM stainless steel after passivation [J]. Corros. Sci., 1998, 41: 275
[1] GONG Ke, WU Ming, ZHANG Sheng. Effect of HCO3- on Stress Corrosion Cracking Behavior of X90 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 727-731.
[2] ZHANG Haoran, WU Hongyan, WANG Shanlin, ZUO Yao, CHEN Yuhua, YIN Limeng. Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[3] YI Guanghui, ZHENG Dajiang, SONG Guangling. Influence of Acid Pickling on Morphology, Optical Parameters and Corrosion Resistance of 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[4] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[5] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[6] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[7] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[8] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[9] Dong LIU,Hongliang XIANG,Chunyu LIU. XPS Analysis of Corrosion Product Scale on Surface of Silver-bearing Antibacterial Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[10] Ming LIU,Xuequn CHENG,Xiaogang LI,Tianjian LU. Corrosion Resistance Mechanisms of Passive Films Formed on Low Alloy Rebar Steels in Liquor of Cement Extract[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[11] Yong HUANG, Shanlin WANG, Shuaixing WANG, Yubing GONG, Liming KE. Corrosion Resistance of Fe-based Bulk Metallic Glass with Sulfide Inclusions in HCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[12] Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[13] Qiang GUO, Changfeng CHEN, Shihan LI, Haobo YU, Helin LI. Cracking Behavior of Cold-welding Layer on A350 LF2 Steel in H2S Environment[J]. 中国腐蚀与防护学报, 2018, 38(2): 167-173.
[14] Guangyu LI, Mingkai LEI. Composition and Semi-conductive Characteristic of Passive Film Formed on γΝ-phase in a Borax Buffer Solution[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[15] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
No Suggested Reading articles found!