Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (1): 117-124    DOI: 10.11902/1005.4537.2020.035
Current Issue | Archive | Adv Search |
Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy
WEI Zheng1,2, MA Baoji1,2(), LI Long2, LIU Xiaofeng1,2, LI Hui3
1.School of Mechanical and Electrical Engineering, Xi'an Technological University, Xi'an 710021, China
2.Key Laboratory of Shaanxi Provincial Special Processing, Xi'an 710021, China
3.School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
Download:  HTML  PDF(12818KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Though Mg-alloy can be used as a new generation of implant materials with good bio-compatibility and biodegradability, its corrosion rate should be reduced to an acceptable level for the application. For that, at the present, the most commonly measure is to apply a micro-arc oxidation coating on the alloy. However, the porosity of the micro-arc oxidation coating is too large, thereby corrosive species can easy migrate inward through the micro-pores, thus degrade its protective effect. Recently, some scholars have found that pretreatment of the metal matrix can increase the density of the micro-arc oxidation coating. So in this study, Mg-alloy was pretreated by ultrasonic rolling before the micro-arc oxidation. Then the prepared micro-arc oxide ceramic coatings on Mg-alloy with or without ultrasonic rolling treatment were comparatively assessed by means of OM, SEM, EDS, XRD, electrochemical workstation (simulated humoral PBS), to reveal the effect of ultrasonic rolling treatment on the properties of micro-arc oxide ceramic coating. Results show that: after ultrasonic rolling treatment, the treated Mg-alloy matrix presents lower surface roughness, finer grains and higher hardness. In comparison with the Micro-arc oxidation ceramic coating on the un-treated Mg-alloy, the element content of Si, P and Ca is increased in the coating on the pre-treated ones, correspondingly the surface was denser and smoother, and the number of macropores significantly decreased, namely, the surface porosity reduced from 31.7% to 19.1%. From electrochemical tests we can see that, the free corrosion potential was 107 mV higher, the corrosion current density was an order of magnitude lower, and the impedance is much higher for the micro-arc oxidation ceramic coating on Mg-alloy pre-treated by ultrasonic rolling. In conclusion, the pre-ultrasonic rolling treatment could effectively improve the corrosion resistance in PBS solution of the micro-arc oxidation ceramic coatings on Mg-alloy.

Key words:  AZ31B Mg-alloy      ultrasonic rolling      grain refinement      micro-arc oxidation      corrosion resistant     
Received:  09 March 2020     
ZTFLH:  TG174  
Fund: Key Research and Development Projects of Shaanxi Province(2018GY-120);Non-traditional;Machining Key Laboratory Open Fund Project of Shaanxi Province(2017SXTZKFJG02);Scientific Research Project of Key Laboratory of Shaanxi Provincial Department of Education(17JS056)
Corresponding Authors:  MA Baoji     E-mail:  mabaoji@xatu.edu.com

Cite this article: 

WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 117-124.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.035     OR     https://www.jcscp.org/EN/Y2021/V41/I1/117

Fig.1  Schematic diagram of ultrasonic rolling
Fig.2  XRD spetra of the magnesium alloy surface before and after ultrasonic rolling
Fig.3  Morphologies of magnesium alloy before (a) and after (b) ultrasonic rolling, peak and valley extremes of Fig.3a and b (c)
Fig.4  OM images of magnesium alloy before (a) and after (b) ultrasonic rolling
Fig.5  TEM micro-structure images at 200 μm (a), 100 μm (b) and 20 μm (c) depth from the surface by ultrasonic rolling
Fig.6  Micro-hardness curves at different depths from the surface
Fig.7  XRD spectra of UIRP+MAO and MAO
Fig.8  SEM images (a1, b1), porosity analysis (a2, b2) and EDS results (a3, b3) of UIRP+MAO (a1~a3) and MAO (b1~b3)
Fig.9  Side morphologies (a1, b1) and lateral energy spectra (a2, b2) of UIRP+MAO (a1, a2) and MAO (b1, b2)
Fig.10  Polarization performance analysis of UIRP+MAO and MAO coating
Fitting elementRs / Ω·cm2CPE1-T / F·cm2CPE1-PR1 / Ω·cm2CPE2-T / F·cm2CPE2-PR2 / Ω·cm2
UIRP+MAO8.5351.694×10-50.9503338.821.961×10-50.9623357636
MAO19.086.623×10-60.9126644.896.885×10-60.8489234634
Table 1  Impedance fitting results of MAO and UIRP+MAO
Fig.11  Nyquist analysis (a) and circuit fitting (b) of UIRP+MAO and MAO coating
1 Hornberger H, Virtanen S, Boccaccini A R. Biomedical coatings on magnesium alloys-A review [J]. Acta Biomater., 2012, 8: 2442
2 Mueller W D, de Mele M F L, Nascimento M L, et al. Degradation of magnesium and its alloys: Dependence on the composition of the synthetic biological media [J]. J. Biomed. Mater. Res., 2010, 90A: 487
3 Witte F. The history of biodegradable magnesium implants: A review [J]. Acta Biomater., 2010, 6: 1680
4 Kim J H, Lee S K, Hwang K S, et al. Nano-tribological properties of topographically undulated nanocrystalline diamond patterns [J]. J. Nanosci. Nanotechnol., 2011, 11: 344
5 Zhang S X, Zhang X N, Zhao C L, et al. Research on an Mg-Zn alloy as a degradable biomaterial [J]. Acta Biomater., 2010, 6: 626
6 Chen Y J, Xu Z G, Smith C, et al. Recent advances on the development of magnesium alloys for biodegradable implants [J]. Acta Biomater., 2014, 10: 4561
7 Wu S K, Yang W, Gao Y, et al. Preparation and characterization of new yellow ceramic coating by micro arc oxidation on 6061 aluminum alloy [J]. Surf. Technol., 2019, 48(7): 142
武上焜, 杨巍, 高羽等. 6061铝合金表面新型黄色微弧氧化陶瓷层的制备与表征 [J]. 表面技术, 2019, 48(7): 142
8 Zhong T S, Jiang B L, Li J M. Characteristics, applications and research direction of micro-arc oxidation technology [J]. Electropl. Finish., 2005, 24(6): 47
钟涛生, 蒋百灵, 李均明. 微弧氧化技术的特点、应用前景及其研究方向 [J]. 电镀与涂饰, 2005, 24(6): 47
9 Das D K, Joshi S V, Singh V. Effect of prealuminizing diffusion treatment on microstructural evolution of high-activity pt-aluminide coatings [J]. Metall. Mater. Trans., 2000, 31A: 2037
10 Lin X, Wang X, Tan L L, et al. Effect of preparation parameters on the properties of hydroxyapatite containing micro-arc oxidation coating on biodegradable ZK60 magnesium alloy [J]. Ceram. Int., 2014, 40: 10043
11 Cao H H, Huo W T, Ma S F, et al. Microstructure and corrosion behavior of composite coating on pure mg acquired by sliding friction treatment and micro-arc oxidation [J]. Materials, 2018, 11: 1232
12 Gheytani M, Bagheri H R, Masiha H R, et al. Effect of SMAT preprocessing on MAO fabricated nanocomposite coating [J]. Surf. Eng., 2014, 30: 244
13 Wen L, Wang Y M, Jin Y, et al. Design and characterization of SMAT-MAO composite coating and its influence on the fatigue property of 2024 Al alloy [J]. Rare Met. Mater. Eng., 2014, 43: 1582
14 Niu Z W, Sun P, Shao Z H, et al. Effect of the ultrasonic shot peening-rare earth precursor films on the corrosion of micro arc oxidation of aluminum alloy AC7A [J]. Plat. Finish., 2015, 37(12): 1
牛宗伟, 孙鹏, 邵珠恒等. 超声喷丸稀土预制膜对铝合金微弧氧化耐蚀性的影响 [J]. 电镀与精饰, 2015, 37(12): 1
15 Hassani F Z, Ketabchi M. Nano grained AZ31 alloy achieved by equal channel angular rolling process [J]. Mater. Sci. Eng., 2011, A528: 6426
16 Ungár T. The meaning of size obtained from broadened X-ray diffraction peaks [J]. Adv. Eng. Mater., 2003, 5: 323
17 Qian M, Ramirez A, Das A, et al. The effect of solute on ultrasonic grain refinement of magnesium alloys [J]. J. Cryst. Growth, 2010, 312: 2267
18 Ling X, Yang W S, Zhao Q Q, et al. Effect of extrusion treatment on the microstructure and mechanical behavior of SiC nanowires reinforced Al matrix composites [J]. Mater. Sci. Eng., 2017, A682: 38
19 Cordero N M, Forest S, Busso E P, et al. Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals [J]. Comput. Mater. Sci., 2012, 52: 7
[1] CHEN Zhenning, YONG Xingyue, CHEN Xiaochun. Micro-defects in Micro-arc Oxidation Coatings on Mg-alloys[J]. 中国腐蚀与防护学报, 2022, 42(1): 1-8.
[2] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[3] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[4] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[5] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[6] ZHANG Tianyi,LIU Wei,FAN Yueming,LI Shimin,DONG Baojun,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. Effect of Synergistic Action of Cu/Ni on Corrosion Resistance of Low Alloy Steel in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
[7] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[8] Zhihu WANG, Jumei ZHANG, Lijing BAI, Guojun ZHANG. Microstructure and Property of Composite Coatings on AZ91 Mg-alloy Prepared by Micro-arc Oxidation and Electroless Cu-layer[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[9] Lixin HAO, Ruiling JIA, Huixia ZHANG, Wei ZHANG, Ting ZHAO, Xiwei ZHAI. Influence of Inhomogeneity of Tandem Welding Joint of 7A52 Al-alloy on Protectiveness of Micro-arc Oxidation Films on Its Surface[J]. 中国腐蚀与防护学报, 2018, 38(3): 219-225.
[10] Zhao YANG, Huiying SHI, Bailing JIANG, Yanfeng GE, Jing ZHANG, Manyu ZHANG, Yan LI. Effect of Pulse Current on Micro-arc Oxidation Process for 1050 Al-alloy[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.
[11] Ying FU, Yan ZHANG, Xingyu BAO, Wei ZHANG, Fuhui WANG, Li XIN. Research Progress on Wear-resistant Coatings for Ti-alloy[J]. 中国腐蚀与防护学报, 2018, 38(2): 117-123.
[12] Haiyuan WANG, Yinghui WEI, Huayun DU, Baosheng LIU, Chunli GUO, Lifeng HOU. Corrosion Inhibition and Adsorption Behavior of Green Corrosion Inhibitor SDDTC on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2018, 38(1): 62-67.
[13] Li FENG, Ligong ZHANG, Sizhen LI, Dajiang ZHENG, Changjian LIN, Shigang DONG. Effect of Ferric Citrate on Microstructure and Corrosion Resistance of Micro-arc Oxidation Black Film on Mg-alloy AZ40M[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.
[14] Jianchun ZHANG,Jingyang JIANG,Yang LI,Jinjie SHI,Longfei ZUO,Danqian WANG,Han MA. Passive Films Formed on Seawater Corrosion Resistant Rebar 00Cr10MoV in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
[15] Jianchun ZHANG,Longfei ZUO,Jinyang JIANG,Han MA,Dan SONG. Microstructure and Properties of Seawater Corrosion Resistant Rebar Steel 00Cr10MoV[J]. 中国腐蚀与防护学报, 2016, 36(4): 363-369.
[1] Tianyuan Luo. ATMOSPHERIC CORROSION AND STRESS CORROSION FOR URANIUM ALLOY[J]. J Chin Soc Corr Pro, 2004, 24(2): 112 -115 .