Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (6): 508-516    DOI: 10.11902/1005.4537.2019.180
Current Issue | Archive | Adv Search |
Performance of Al-Zn-In-Mg-Ti Sacrificial Anode in Simulated Low Dissolved Oxygen Deep Water Environment
SUN Haijing(), QIN Ming, LI Lin
School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
Download:  HTML  PDF(13139KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The performance of the Al-Zn-In-Mg-Ti sacrificial anode, which is usually used in shallow sea area, was studied in a simulated deep-sea water of low dissolved oxygen via weight loss measurement, galvanostatic method, potentiodynamic polarization curves, electrochemical impedance spectroscopy and cyclic voltammograms test and scanning electron microscope (SEM/EDS), in terms of the open circuit potential, work potential, actual electric capacity, electric current efficiency and corrosion morphology of the Al-Zn-In-Mg-Ti sacrificial anode. It was found that, the dissolution rate of the Al-Zn-In-Mg-Ti sacrificial anode decreased in the simulated seawater of a low dissolved oxygen. The re-deposition process of the active elements was suppressed and the oxide scale on the anode surface was hard to be dissolved. Correspondingly, both the discharge performance and the current efficiency decrease, therefore a corresponding design margin should be set aside in the design course of cathodic protection.

Key words:  deep water environment      low dissolved oxygen      sacrificial anode      electrochemical performance     
Received:  15 October 2019     
ZTFLH:  TG174  
Fund: Doctor Startup Fund of Liaoning Province(201601181);General Scientific Research Project of Liaoning Education Department(L2015464);“Seedling Cultivation” Project for Young Scientific and Technological Talents of Liaoning Education Department(LG201928)
Corresponding Authors:  SUN Haijing     E-mail:  hjsun@alum.imr.ac.cn

Cite this article: 

SUN Haijing, QIN Ming, LI Lin. Performance of Al-Zn-In-Mg-Ti Sacrificial Anode in Simulated Low Dissolved Oxygen Deep Water Environment. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 508-516.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.180     OR     https://www.jcscp.org/EN/Y2020/V40/I6/508

Fig.1  OCP vs time curves for Al-Zn-In-Mg-Ti sacrificial anode in two different dissolved oxygen environments
Fig.2  CCP vs time curves for Al-Zn-In-Mg-Ti sacrificial anode in two different dissolved oxygen environments
EnvironmentQ / A·h·kg-1η / %
SDO2558.4889.27
LDO2432.5284.87
Table 1  Electrochemical performance of Al-Zn-In-Mg-Ti sacrificial anode in two different dissolved oxygen environments
Fig.3  Macroscopic morphologies of corroded Al-Zn-In-Mg-Ti sacrificial anode after discharge test in two environments with SDO (a) and LDO (b)
Fig.4  Microscopic morphologies of Al-Zn-In-Mg-Ti sacrificial anode without corrosion products after discharge test in two environments with SDO (a) and LDO (b)
EnvironmentMass loss / g·m-2Corrosion rate / g·m-2·d-1
SDO3.07440.4392
LDO1.71360.2448
Table 2  Mass losses of Al-Zn-In-Mg-Ti alloy immersed for 168 h in artificial seawaters with different concentrations of dissolved oxygen
Fig.5  Potentiodynamic polarization curves of Al-Zn-In-Mg-Ti alloy in artificial seawaters with different concentrations of dissolved oxygen
Fig.6  Cyclic voltammetry curves of Al-Zn-In-Mg-Ti alloy in artificial seawaters containing different concentrations of dissolved oxygen
Fig.7  Nyquist plots of Al-Zn-In-Mg-Ti alloy in artificial seawaters containing different concentrations of dissolved oxygen
Fig.8  Equivalent circuits for fitting EIS data obtained in artificial seawaters containing SDO (a) and LDO (b)
EnvironmentRs / Ω·cm2Qdl / μF·cm-2n1 (0<n<1)Rt / Ω·cm2L / H·cm2R1 / Ω·cm2χ2
SDO11.916.117× 10-60.97986324894.549172.311×10-2
LDO7.6551.07× 10-50.941512510------3.591×10-3
Table 3  Parameters extracted from EIS data of Al-Zn-In-Mg-Ti alloy in artificial seawaters containing different concentrations of dissolved oxygen
Fig.9  Macroscopic morphologies of Al-Zn-In-Mg-Ti alloy immersed for 168 h in artificial seawaters containing SDO (a) and LDO (b)
Fig.10  Microscopic morphologies of Al-Zn-In-Mg-Ti alloy immersed for 168 h in artificial seawaters containing SDO (a) and LDO (b), and the magrified images of areas I in Fig.10a (c) and II in Fig.10c (d)
Fig.11  EDS analysis results in the marked areas of Al-Zn-In-Mg-Ti alloy immersed for 168 h in artificial seawaters containing SDO (a) and LDO (b)
[1] Schumacher M. Sea Water Corrosion Handbook [M]. New Jersey: Noye Data, 1979
[2] Traverso P, Canepa E. A review of studies on corrosion of metals and alloys in deep-sea environment [J]. Ocean Eng., 2014, 87: 10
doi: 10.1016/j.oceaneng.2014.05.003
[3] Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 47
(周建龙, 李晓刚, 程学群等. 深海环境下金属及合金材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 47)
[4] Tang J W, Shao Y W, Zhang T, et al. Effect of cyclic pressure on degradation behavior of epoxy coating in simulated deep ocean environment [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 275
(唐俊文, 邵亚薇, 张涛等. 循环压力对环氧涂层在模拟深海环境中失效行为的影响 [J]. 中国腐蚀与防护学报, 2011, 31: 275)
[5] Sun H J, Liu L, Li Y, et al. Effect of hydrostatic pressure on the corrosion behavior of a low alloy steel [J]. J. Electrochem. Soc., 2013, 160: C89
[6] Liu L, Cui Y, Li Y, et al. Failure behavior of nano-SiO2 fillers epoxy coating under hydrostatic pressure [J]. Electrochim. Acta, 2012, 62: 42
doi: 10.1016/j.electacta.2011.11.067
[7] Rhee K Y, Lee S M, Park S J. Effect of hydrostatic pressure on the mechanical behavior of seawater-absorbed carbon/epoxy composite [J]. Mater. Sci. Eng., 2004, A384: 308
[8] Idusuyi N, Oluwole O O. Aluminium anode activation research-a review [J]. Int. J. Sci. Technol., 2012, 2: 12
[9] Zhang W Y, Wang X Y, Xi L J, et al. Research progress of sacrificial anode materials in cathodic protection technology [J]. Corros. Sci. Prot. Technol., 2013, 25: 420
(张万友, 王鑫焱, 郗丽娟等. 阴极保护技术中牺牲阳极材料的研究进展 [J]. 腐蚀科学与防护技术, 2013, 25: 420)
[10] Sun M X, Ma L, Zhang H B, et al. Research progress in aluminum alloy sacrificial anode materials [J]. Equip. Environ. Eng., 2018, 15(3): 9
(孙明先, 马力, 张海兵等. 铝合金牺牲阳极材料的研究进展 [J]. 装备环境工程, 2018, 15(3): 9)
[11] NACE Standard RP0176-2003, Item No. 21018, Standard Recommended Practice in Corrosion Control of Steel Fixed Offshore Structures Associated with Petroleum Production [S]. Houston, 2003
[12] Det Norske Veritas. DNV-RP-B401 Cathodic Protection Design, Recommended Practice [S]. Norway: Det Norske Veritas, 2005
[13] Li C J, Du M. Research and development of cathodic protection for steels in deep seawater [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 10
(李成杰, 杜敏. 深海钢铁材料的阴极保护技术研究及发展 [J]. 中国腐蚀与防护学报, 2013, 33: 10)
[14] Canepa E, Stifanese R, Merotto L, et al. Corrosion behaviour of aluminium alloys in deep-sea environment: A review and the KM3NeT test results [J]. Mar. Struct., 2018, 59: 271
doi: 10.1016/j.marstruc.2018.02.006
[15] Tawns A, Oakley R. Cathodic protection at simulated depth of 2500 m [A]. Corrosion 2000 [C]. Orlando, Florida, 2000
[16] Fischer K P, Espelid B, Schei B. A review of CP current demand and anode performance for deep water [A]. Corrosion 2001 [C]. Houston, Texas, 2001
[17] Hu S N. Research on property of Al-Zn-In sacrifical anode under simualte deep sea water [D]. Harbin: Harbin Engineering University, 2012
(胡胜楠. 模拟深海环境下Al-Zn-In牺牲阳极性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2012)
[18] Li W L, Yan Y G, Chen G, et al. The effect of temperature and dissolved oxygen concentration on the electrochemical behavior of Al-Zn-Inbased anodes [J]. Proced. Eng., 2011, 12: 27
doi: 10.1016/j.proeng.2011.05.006
[19] Sun H J, Liu L, Li Y, et al. The performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated deep water environment [J]. Corros. Sci., 2013, 77: 77
doi: 10.1016/j.corsci.2013.07.029
[20] ASTM. ASTM D1141-98 Standard practice for the preparation of substitute ocean water [S]. West Conshohocken, PA: ASTM International, 2008
[21] State Bureau of Quality and Technical Supervision. GB/T17848-1999 Test methods for electrochemical properties of sacrificial anodes [S]. Beijing: China Standard Press, 2000
(国家质量技术监督局. GB/T17848-1999 牺牲阳极电化学性能试验方法 [S]. 北京: 中国标准出版社, 2000)
[22] Hu S X. Handbook of Cathodic Protection Engineering [M]. Beijing: Chemical Industry Press, 1999
(胡士信. 阴极保护工程手册 [M]. 北京: 化学工业出版社, 1999)
[23] Reboul M C, Gimenez P H, Rameau J J. A proposed activation mechanism for Al anodes [J]. Corrosion, 1984, 40: 366
doi: 10.5006/1.3593939
[24] Ma J L, Wen J B, Li G X, et al. The corrosion behaviour of Al-Zn-In-Mg-Ti alloy in NaCl solution [J]. Corros. Sci., 2010, 52: 534
doi: 10.1016/j.corsci.2009.10.010
[25] Zhao G Q, Wei Y H, Li J. Current efficiency and corrosion mechanism of Al-Zn-In sacrificial anode at different current densities [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 69
(赵国强, 魏英华, 李京. Al-Zn-In牺牲阳极在不同工作电流密度下电流效率及溶解机制的研究 [J]. 中国腐蚀与防护学报, 2015, 35: 69)
doi: 10.11902/1005.4537.2013.279
[26] Huang Y B, Song G W, Liu X B, et al. Corrosion protection of Al-Zn-In-Mg-Ga-Mn aluminous sacrificial anode [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 44
(黄燕滨, 宋高伟, 刘学斌等. Al-Zn-In-Mg-Ga-Mn腐蚀防护行为研究 [J]. 中国腐蚀与防护学报, 2012, 32: 44)
[27] Xu H Y, Li Y B. Activation behavior of aluminum sacrificial anodes in sea water [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 186
(徐宏妍, 李延斌. 铝基牺牲阳极在海水中的活化行为 [J]. 中国腐蚀与防护学报, 2008, 28: 186)
[28] Qi G T, Qu J E, Liao H X. Study on the electrochemical performances of segregation phases in alumium anodes containing RE [J]. J. Chin. Soc. Corros. Prot., 2003, 23: 355
(齐公台, 屈钧娥, 廖海星. 含RE铝阳极中析出相的电化学行为研究 [J]. 中国腐蚀与防护学报, 2003, 23: 355)
[1] ZHAO Guoqiang, WEI Yinghua, LI Jing. Current Efficiency and Corrosion Mechanism of Al-Zn-In Sacrificial Anode at Different Current Densities[J]. 中国腐蚀与防护学报, 2015, 35(1): 69-74.
[2] HOU Juncai, LIANG Guojun, QIAO Jinhua, ZHANG Qiumei. LOW Mn CONTENT MAGNISIUM SACRIFICIAL ANODE[J]. 中国腐蚀与防护学报, 2012, 32(5): 403-406.
[3] HU Shengnan, ZHANG Tao, SHAO Yawei, MENG Guozhe, WANG Fuhui. EFFECT OF CYCLIC HYDROSTATIC PRESSURE ON SACRIFICIAL ANODE CATHODIC PROTECTION[J]. 中国腐蚀与防护学报, 2012, 32(3): 241-246.
[4] HUANG Yanbin, SONG Gaowei, LIU Xuebin1 DING Huadong, YAN Yonggui, SHAO Xinhai. CORROSION PROTECTION OF Al-Zn-In-Mg-Ga-Mn ALUMINOUS SACRIFICIAL ANODE[J]. 中国腐蚀与防护学报, 2012, 32(1): 44-47.
[5] HOU Juncai, ZHANG Qiumei. CURRENT STATUS OF HIGH POTENTIAL MAGNESIUM SACRIFICIAL ANODES[J]. 中国腐蚀与防护学报, 2011, 31(2): 81-85.
[6] MA Li, LI Weili, ZENG Hongjie, YAN Yonggui,HOU Baorong. LOW DRIVING VOLTAGE Al-Ga SACRIFICIAL ANODE AND ITS ACTIVATION MECHANISM[J]. 中国腐蚀与防护学报, 2010, 30(4): 329-332.
[7] KONG Xiaodong; DING Zhenbin; ZHU Meiwu. EFFICIENCY AND EFFECTING FACTORS OF Mg CONTAINING Al ALLOY SACRIFICIAL ANODES[J]. 中国腐蚀与防护学报, 2010, 30(1): 6-10.
[8] . Activation behavior of aluminum sacrificial anodes in sea water[J]. 中国腐蚀与防护学报, 2008, 28(3): 186-192 .
[9] ;. EFFECT OF SMALL ADDITION OF STRONTIUM ONMICROSTRUCTURE AND ELECTROCHEMICALPERFORMANCE OF Mg-Mn SACRIFICIAL ANODE[J]. 中国腐蚀与防护学报, 2006, 26(3): 166-170 .
[10] ;. EVALUATION PERFORMANCE OF SACRIFICIAL ANODE USING GALVANIC CURRENT[J]. 中国腐蚀与防护学报, 2005, 25(3): 176-178 .
[11] Gongtai Qi; June Qv; Haixing Liao. STUDY ON THE ELECTROCHEMICAL PERFORMANCES OF SEGREGATION PHASES IN ALUMINUM ANODES CONTAINING RE[J]. 中国腐蚀与防护学报, 2003, 23(6): 355-358 .
[12] Yi Li; Yongguang Li. THE ANALYSIS FOR FAILURE Al SACRIFICIAL ANODE USED IN SEA BED PIPELINES[J]. 中国腐蚀与防护学报, 2002, 22(1): 60-64 .
[13] Aiping Zeng. HYDROGEN EVOLUTION ON MAGNESIUM SACRIFICIAL ANODE IN FRESH WATER[J]. 中国腐蚀与防护学报, 1999, 19(2): 85-89 .
[14] GONG Jin-bao XU Nai-xin ZHANG Cheng-dian (Shanghai Institute of Metallurgy; Chinese Academy of Sciences; Shanghai 200050). THE EFFECT OF AC INTERFERENCE ON ELECTROCHEMICAL PERFORMANCE OF AZ41 MAGNESIUM SACRIFICIAL ANODE[J]. 中国腐蚀与防护学报, 1998, 18(1): 21-26.
[15] GONG Jinbao XU Naixin ZHANG Chengdian (Shanghai Institute of Metallurgy; Chinese Academy of Sciences; Shanghai 200050)TANG Baixiang (Nanjing Dolomite Mine). ELECTROCHEMICAL PERFORMANCE OF AZ41 MAGNESIUM ALLOY SACRIFICIAL ANODE AT VARIOUS TEMPERATURES[J]. 中国腐蚀与防护学报, 1997, 17(3): 167-172.
No Suggested Reading articles found!