Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (6): 573-579    DOI: 10.11902/1005.4537.2016.176
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Resistance and Hardness of Amorphous Ti-B Based Coatings
Xiangying XU1,2,Fangfang GE2,Peng LI2,Rui SHU2,Feng HUANG2(),Moucheng LI1
1. Materials Science and Engineering, Shanghai University, Shanghai 200072, China
2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Download:  HTML  PDF(750KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Amorphous Ti-B based coatings with various densities were deposited on various substrates, i.e. Eagle glass, silicon slice and NdFeB alloy respectively, by means of magnetron sputtering, and then their structure, hardness and corrosion resistance were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), nanoindentation tester, and Modulab electrochemical workstation. The results show that the prepared coatings are amorphous with densities varying in a range 4.04, 4.27 and 4.61 g/cm3 through controlling the processing parameter. Their cross-sectional morphologies show that all the coatings are homogeneous, compact and smooth without features of columnar structure existed in the common PVD coatings. The hardness and corrosion resistance of coatings are closely related to their densities. When the coating density is increased by 14.11%, the hardness is enhanced by 49.01% for the coatings deposited on silicon slice, and the corrosion current density is decreased to 1/3 of that of the one with density 4.04 g/cm3, for the coatings deposited on NdFeB. Correspondingly, the hardness and plastic index are 30.1 GPa and 0.48 respectively for the coating with density 4.61 g/cm3 on silicon slice. Meanwhile, all the coatings with various densities can provide corrosion protection for NdFeB substrates. With the increasing coating density the free corrosion potential shifts to the positive direction and the relevant free corrosion current density decreases gradually for the Ti-B coatings on NbFeB, in the contrast, the bare substrate is just the opposite. The coating with density 4.61 g/cm3 on NdFeB exhibits a free corrosion current density 1.34×10-6 A/cm2, about 1/8 of that of NdFeB substrate, and free corrosion potential -0.689 V, 0.220 V nobler than bare substrate in the 3.5% (mass fraction) NaCl solution. It follows that the amorphous and hard Ti-B coatings can provide good protectiveness to the NdFeB alloy in environments such as NaCl solution.

Key words:  amorphous coating      metal substrate      hardness      corrosion resistance     

Cite this article: 

Xiangying XU,Fangfang GE,Peng LI,Rui SHU,Feng HUANG,Moucheng LI. Corrosion Resistance and Hardness of Amorphous Ti-B Based Coatings. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 573-579.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.176     OR     https://www.jcscp.org/EN/Y2016/V36/I6/573

Sample Densitygcm-3 Thicknessμm Atomic fraction of Ti / %
S1 4.04 1.72 39.5
S2 4.27 1.46 39.7
S3 4.61 1.33 39.5
Table 1  Comparisons of density and Ti content ofdifferent coatings
Fig.1  Cross-sectional morphologies of three coatings with various densities of 4.04 g/cm3 (a), 4.27 g/cm3 (b) and 4.61 g/cm3 (c)
Fig.2  XRD patterns of different Ti-B coatings
Fig.3  Hardness and indentation modulus of three Ti-B based coatings
Fig.4  Plastic index of three coatings as a function of coating density
Fig.5  Tafel polarization curves of three Ti-B based coatings with various densities
Substrate Icorr / Acm-2 Ecorr / V RP / Ωcm2 Βa / Vdec-1 Βc / Vdec-1
S1 4.32×10-6 -0.768 3.82×103 0.062 0.098
S2 2.86×10-6 -0.722 5.68×103 0.065 0.088
S3 1.34×10-6 -0.689 7.38×103 0.046 0.045
NdFeB 8.39×10-6 -0.909 1.99×103 0.062 0.101
Table 2  Electrochemical parameters of bare and coated NdFeB samples
Fig.6  Bode (a) and Nyquist (b) plots of three amorphous coatings
Fig.7  Electrochemical equivalent circuit model forEIS ananlysis
[1] Cheng X, Zhang R Y, Li F.Study on preparation and properties of TiB2 protective coating[J]. Paint Coat. Ind., 2011, 41(7): 24
[1] (陈枭, 张仁元, 李风. TiB2防护涂层的制备及性能[J]. 涂料工业, 2011, 41(7): 24)
[2] Sun C Y, He Q B, Li L, et al.Review of TiB2 coating deposited by magnetron sputtering method[J]. Mater. Rev., 2009, 23(14): 48
[2] (孙彩云, 何庆兵, 李立等. 磁控溅射法制备TiB2涂层的研究进展[J]. 材料导报, 2009, 23(14): 48)
[3] Navinsek B, Panjan P, Milosev I.PVD coatings as an environmentally clean alternative to electroplating and electroless processes[J]. Surf. Coat. Technol., 1999, 1(16): 476
[4] Fastner U, Steck T, Pascual A, et al.Electrochemical deposition of TiB2 in high temperature molten salts[J]. J. Alloy. Compd., 2008, 452(1): 32
[5] Lim J W, Lee J J, Ahn H, et al.Mechanical properties of TiN/TiB2 multilayers deposited by plasma enhanced chemical vapor deposition[J]. Surf. Coat. Technol., 2003, 17(4): 720
[6] Fenker M, Balzer M, Kappl H.Corrosion protection with hard coatings on steel: Past approaches and current research efforts[J]. Surf. Coat. Technol., 2014, 25(7): 182
[7] Korhonen A S.Corrosion of thin hard pvd coatings[J]. Vacuum, 1994, 45(10/11): 1031
[8] Liu C, Bi Q, Leyland A, et al.An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II. EIS interpretation of corrosion behaviour[J]. Corros. Sci., 2003, 45(6): 1257
[9] Milosev I, Navinsek B A.Corrosion study of tin (physical vapor-deposition) hard coatings deposited on various substrates[J]. Surf. Coat. Technol., 1994, 63(3): 173
[10] Massiani Y, Medjahed A, Crousier J P, et al.Corrosion of sputtered titanium nitride films deposited on iron and stainless-steel[J]. Surf.Coat. Technol., 1991, 45(1-3): 115
[11] Purandare Y P, Ehiasarian A P, Hovsepian P E. Deposition of nanoscale multilayer CrN/NbN physical vapor deposition coatings by high power impulse magnetron sputtering [J]. J. Vac. Sci. Technol., 2008, 26(2)A: 288
[12] Meng F P, Wang B, Ge F F, et al.Microstructure and mechanical properties of Ni-alloyed SiC coatings[J]. Surf. Coat. Technol., 2012, 21(3): 77
[13] Lin C H, Duh J G.Electrochemical impedance spectroscopy (EIS) study on corrosion performance of CrAlSiN coated steels in 3.5wt.%NaCl solution[J]. Surf. Coat. Technol., 2009, 204(6/7): 784
[14] Liu C, Bi Q, Leyland A, et al.An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modelling[J]. Corros. Sci., 2003, 45(6): 1243
[15] Valleti K, Jyothirmayi A, Ramakrishna M, et al. Influence of substrate temperature and bias voltage on properties of chromium nitride thin films deposited by cylindrical cathodic arc deposition [J]. J. Vac. Sci. Technol., 2011, 29(5)A: 1
[16] Wang H Y, Wang B, Li S Z, et al.Toughening magnetron sputtered TiB2 coatings by Ni addition[J]. Surf. Coat. Technol., 2013, 23(2): 767
[17] Gu W C, Li S D, Wang H Y, et al.Influence of bias voltage on microstructure and properties of magnetron sputtering TiB2 coating[J]. J. Aeronaut. Mater., 2014, 34(5): 37
[17] (谷文翠, 李寿德, 王怀勇等. 基片偏压对磁控溅射制备TiB2涂层结构及性能的影响[J]. 航空材料学报, 2014, 34(5): 37)
[18] Sundgren J E, Hentzell H T G A. Review of the present state of art in hard coatings grown from the vapor-phase [J]. J. Vac. Sci. Technol., 1986, 4(5)A: 2259
[19] Haines J, Leger J M, Bocquillon G.Synthesis and design of superhard materials[J]. Annu. Rev. Mater. Res., 2001, 31: 1
[20] Zhu P, Ge F F, Li S Z, et al.Microstructure, chemical states, and mechanical properties of magnetron co-sputtered V1-xAlxN coatings[J]. Surf. Coat. Technol., 2013, 23(2): 311
[21] Chen B F, Pan W L, Yu G P, et al.On the corrosion behavior of TiN-coated AISI D2 steel[J]. Surf. Coat. Technol., 1999, 111(1): 16
[22] Marco J F, Agudelo A C, Gancedo J R, et al.Corrosion resistance of single TiN layers, Ti/TiN bilayers and Ti/TiN/Ti/TiN multilayers on iron under a salt fog spray (Phohesion) test: An evaluation by XPS[J]. Surf. Interface Anal., 1999, 27(2): 71
[23] Lin M T, Wan C H, Wu W T.Comparison of corrosion behaviors between SS304 and Ti substrate coated with (Ti,Zr) N thin films as metal bipolar plate for unitized regenerative fuel cell[J]. Thin Solid Films, 2013, 54(4): 162
[24] Nie X, Meletis E I, Jiang J C, et al.Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis[J]. Surf. Coat. Technol., 2002, 149(2/3): 245
[25] Qin L G, Zhao W J, Hou H, et al.Achieving excellent anti-corrosion and tribological performance by tailoring the surface morphology and chemical composition of aluminum alloys[J]. RSC Adv., 2014, 4(104): 60307
[26] Vacandio F, Massiani Y, Gravier P, et al.Improvement of the electrochemical behaviour of AlN films produced by reactive sputtering using various under-layers[J]. Electrochim. Acta, 2001, 46(24/25): 3827
[27] Liu C, Bi Q, Ziegele H, et al. Structure and corrosion properties of PVD Cr-N coatings [J]. J. Vac. Sci. Technol., 2002, 20(3)A: 772
[28] Creus J, Idrissi H, Mazille H, et al.Corrosion behaviour of TiN and CrN coatings produced by cathodic arc PVD process on mild steel substrate[J]. Surf. Eng., 1998, 14(5): 432
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[9] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[10] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[11] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[12] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[13] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[14] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[15] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
No Suggested Reading articles found!