Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (6): 580-586    DOI: 10.11902/1005.4537.2016.169
Orginal Article Current Issue | Archive | Adv Search |
Environmental Corrosion in Industrial-marine Atmosphere at Qingdao of 7050 Al-alloy Anodized in Boric- and Sulfuric-acid Electrolyte
Ziheng BAI1,2,Yunhua HUANG1,2,Xiaogang LI1,2,3,Lang YANG1,2,Chaofang DONG1,2,Lidan YAN1,2,Kui XIAO1,2()
1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2. Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
3. Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
Download:  HTML  PDF(1212KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion behavior of 7050 Al-alloy, which was pre- anodized in electrolyte of boric-and sulfuric-acid, was assessed through field exposure in industrial-marine atmosphere for 2 a at Qingdao area. The corrosion rate was acquired from the relevant mass-lost data. The surface morphology, distribution of elements and the phase compositions of corrosion products were characterized by SEM, EDS and XRD, as well as the protectiveness of product scale and anodic film was evaluated by using EIS. It is indicated that the bare Al suffered from severe exfoliation corrosion with annual corrosion rate of 5.92 μma-1, and its corrosion product mainly consists of Al(HSO4)36H2O, Al4SO4(OH)105H2O and NaAlSi3O8; the formed corrosion product scale on the bare Al can provide protectiveness to the substrate to some extent, however, the anodized film can provide much better protectiveness in comparison with the formed oxide scale on bare Al.

Key words:  atmospheric corrosion      anodized aluminum alloy      industrial marine atmosphere      7050 aluminum alloy     

Cite this article: 

Ziheng BAI,Yunhua HUANG,Xiaogang LI,Lang YANG,Chaofang DONG,Lidan YAN,Kui XIAO. Environmental Corrosion in Industrial-marine Atmosphere at Qingdao of 7050 Al-alloy Anodized in Boric- and Sulfuric-acid Electrolyte. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 580-586.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.169     OR     https://www.jcscp.org/EN/Y2016/V36/I6/580

Climate Result Pollutant Result
Average temperature 14.3 ℃ Sulfation rate 25.06 mgm-2d-1
Average RH 73.3% Sea salt particles depositon rate 18.77 mgm-2d-1
Rain 305.6 mma-1 SO42- of rain 7350 mgm-3
pH of rain 4.45~5.88 Cl- of rain 14269 mgm-3
Table 1  Climatic parameters and atmospheric pollutants of Qingdao
Time / a Bare Anodized
1 11.70 0.82
2 5.92 0.58
Table 2  Corrosion rates of bare and anodized aluminumalloy in Qingdao atmosphere
Fig.1  Macroscopic morphologies of bare (a, c, e) and anodized (b, d, f) aluminum alloy samples after exposed for 0 a (a, b), 1 a (c, d) and 2 a (e, f)
Fig.2  Microscopic morphologies of corrosion products of bare (a, c) and anodized (b, d) aluminum alloysamples
Fig.3  Microscopic morphologies of bare (a) and anodized (b) aluminum alloy after removal of corrosion products
Area C O Zn Mg Al Si S Cl
A 5.52 60.90 0.39 0.58 27.54 1.07 5.09 0.21
B 3.85 56.03 0.89 0.74 28.95 0.37 5.84 0.44
Table 3  Elements distribution of corrosion products in Fig.2 by EDS (atomic fraction / %)
Fig.4  XRD pattern of corrosion products on bare aluminumalloy after exposure for 2 a
Fig.5  Bode diagrams and fitted curves of bare (a) and anodized (b) aluminum alloy
Fig.6  Equivalent circuits of bare (a) and anodized (b) aluminum alloy for EIS analysis
Alloy RsΩcm2 RrΩcm2 WFcm-2Hz-1/2 RctΩcm2 RpΩcm2 RbΩcm2 ∑χ 2
Bare aluminum alloy 34.4 826 2.65×10-5 2.17×106 --- --- 1.65×10-4
Anodized aluminum alloy 39.8 --- --- --- 1.99×105 3.87×107 7.15×10-4
Table 4  Fitting parameters of EIS equivalent circuit of bare and anodized aluminum alloy
[1] Liu B, Peng C Q, Wang R C, et al.Recent development and prospects for giant plane aluminum alloys[J]. Chin. J. Nonferrous Met., 2010, 20(9): 1705
[1] (刘兵, 彭超群, 王日初等. 大飞机用铝合金的研究现状及展望[J]. 中国有色金属学报, 2010, 20(9): 1705)
[2] Zhou H, Li X, Xiao K, et al.The corrosion behavior of aluminum alloy 7A04 under cyclic wet-dry immersion conditions[J]. Rare Met. Mater. Eng., 2009, 38(4): 293
[3] Ren J J, Zuo Y.The study on morphology and growth mechanism of pits on anodized aluminum[J]. J. Chin. Soc. Corros. Prot., 2003, 23(4): 198
[3] (任建军, 左禹. 铝阳极氧化膜的蚀孔形貌与蚀孔生长机理研究[J]. 中国腐蚀与防护学报, 2003, 23(4): 198)
[4] Du N, Wang S X, Zhao Q, et al.Effects of boric acid on microstructure and corrosion resistance of boric/sulfuric acid anodic film on 7050 aluminum alloy[J]. Trans. Nonferrous Met. Soc., 2012, 22: 1655
[5] Yang Y, Peng T, Wang D W, et al.Sulfuric acid-boric acid anodization process for Al alloys[J]. Electroplat. Pollut. Control, 2007, 27(5): 31
[5] (杨燕, 彭涛, 王大为等. 铝合金硫酸-硼酸阳极氧化工艺[J]. 电镀与环保, 2007, 27(5): 31)
[6] Dan Z, Muto I, Hara N.Effects of environmental factors on atmospheric corrosion of aluminium and its alloys under constant dew point conditions[J]. Corros. Sci., 2012, 57(2): 22
[7] Dong C, Xiao K, Xu L, et al.Characterization of 7A04 aluminum alloy corrosion under atmosphere with chloride ions using electrochemical techniques[J]. Rare Met. Mater. Eng., 2011, 40(2): 275
[8] Knight S P, Salagaras M, Trueman A R.The study of intergranular corrosion in aircraft aluminium alloys using X-ray tomography[J]. Corros. Sci., 2011, 53(2): 727
[9] Bartolomé M A J, Río J F D, Escudero E, et al. Behaviour of different bare and anodised aluminium alloys in the atmosphere[J]. Surf. Coat. Technol., 2008, 202(12): 2783
[10] González J A, Morcillo M, Escudero E, et al.Atmospheric corrosion of bare and anodized aluminium in a wide range of environmental conditions. Part I: Visual observations and gravimetric results[J]. Surf. Coat. Technol., 2002, 153(2/3): 225
[11] López V, González J A, Otero E, et al.Atmospheric corrosion of bare and anodised aluminium in a wide range of environmental conditions. Part II: Electrochemical responses[J]. Surf. Coat. Technol., 2002, 153(2/3): 235
[12] Syed S.Influence of the environment on atmospheric corrosion of aluminium[J]. Corros. Eng. Sci. Technol., 2010, 45(4): 282
[13] Vera R, Delgado D, Rosales B M.Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 1. Aluminium and AA6201 alloy[J]. Corros. Sci., 2006, 48(10): 2882
[14] Cui Z Y, Li X G, Man C, et al.Corrosion behavior of field-exposed 7A04 aluminum alloy in the Xisha tropical marine atmosphere[J]. J. Mater. Eng. Perform., 2015, 24(8): 2885
[15] Li T, Li X G, Dong C F, et al.Characterization of atmospheric corrosion of 2A12 aluminum alloy in tropical marine environment[J]. J. Mater. Eng. Perform., 2010, 19(4): 591
[1] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[2] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[3] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[4] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[5] REN Jianping,SONG Renguo. Effect of Two-stage Ageing on Mechanical Properties and Sensitivity to Hydrogen Embrittlement of 7050 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[6] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[7] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[8] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[9] Xinxin ZHANG,Zhiming GAO,Wenbin HU,Zhipeng WU,Lianheng HAN,Lihua LU,Yan XIU,Dahai XIA. Correlation Between Corrosion Behavior and Image Information of Q235 Steel Beneath Thin Electrolyte Film[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[10] Xin ZHANG,Nianwei DAI,Yan YANG,Junxi ZHANG. Effect of Direct Current Electric Field on Corrosion Mechanism of Zn Exposed to Simulated Industrial Environment[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[11] Xiaobo MENG,Wubin JIANG,Yongli LIAO,Ruihai LI,Zhijun ZHENG,Yan GAO. Investigation on Atmospheric Corrosion Behavior of Transmission Tower Materials in Simulated Industrial Environments[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[12] Fengxuan SONG,Qizhong ZHAO,Feilong LI,Yuelu REN,Kui HUANG,Xinming ZHANG. Effect of Aging Treatment on Corrosion Rate of 7050 Al-alloy Plate[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[13] Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[14] Dongliang LI,Guiqin FU,Miaoyong ZHU. Effect of Si on Corrosion Behavior of Model Bridge Steels by Alternative Wetting/drying Test in an Artificial Medium Simulated Hot and Humid Atmosphere of Marine and Industrial Area[J]. 中国腐蚀与防护学报, 2016, 36(5): 433-440.
[15] Chuan WANG,Gongwang CAO,Chen PAN,Zhenyao WANG,Miaoran LIU. Atmospheric Corrosion of Carbon Steel and Weathering Steel in Three Environments[J]. 中国腐蚀与防护学报, 2016, 36(1): 39-46.
No Suggested Reading articles found!