Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (4): 354-359    DOI: 10.11902/1005.4537.2016.101
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Properties of Steel Sheet with Zinc-base Alloyed Coatings
Guangrui JIANG1,2(), Haiquan WANG1,2,3, Min LI1, Guanghui LIU1,2, Chunqian XIE1,2
1 Shougang Group Co., Ltd. Research Institute of Technology, Beijing 100043, China
2 Beijing Key Laboratory of Green Recyclable Process for Iron & steel Production Technology, Beijing 100043, China
3 National Engineering Lab of Advanced Coating Technology for Metal Materials, China Iron and Steel Research Institute Group (CISRI), Beijing 100081, China
Download:  HTML  PDF(3382KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three hot-dip galvanizing coatings i.e. pure Zn, Zn-5%Al and Zn-2%Al-2%Mg were prepared respectively on sheets of a commercial interstitial free (IF) steel by a hot-dip process simulator (HDPS). Corrosion behavior of the coated steel sheets was studied by means of immersion test, electrochemical measurement and scanning electron microscope (SEM). Results show that the Zn-Al-Mg coating has the largest corrosion current density at the early stage of immersion. While with the increasing immersion time, the corrosion current density of the Zn-Al-Mg decreases but those of the pure Zn and Zn-5%Al coatings increase. For the Zn-5%Al coating, diffusion characteristics could be found for its Nyquist curve, which means higher corrosion rate. However, for the Zn-Al-Mg coating, limited diffusion characteristics could be found for its Nyquist curve, which means a perfect coverage of corrosion products on the coating surface, in other word, the corrosion resistance was enhanced.

Key words:  steel sheet      Zn-Al-Mg coating      corrosion resistance      Galfan coating      hot-dipping     
Received:  19 July 2016     
ZTFLH:  TG172  
Fund: Supported by Beijing Science and Technology Project (D15110300350000)
About author: 

These authors contributed equally to this work.

Cite this article: 

Guangrui JIANG, Haiquan WANG, Min LI, Guanghui LIU, Chunqian XIE. Corrosion Properties of Steel Sheet with Zinc-base Alloyed Coatings. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 354-359.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.101     OR     https://www.jcscp.org/EN/Y2017/V37/I4/354

Hot-dip alloy Al Mg Zn
Pure zinc 0.2 0 Bal.
Galfan 5 0 Bal.
Zn-Al-Mg 2 2 Bal.
Table 1  Chemical compositions of three zinc alloys (mass fraction / %)
Fig.1  Surface morphologies of pure zinc coating after immersion in 3.5%NaCl solution for 25 h (a), 125 h (b) and 300 h (c)
Fig.2  Surface morphologies of Galfan coating after immersion in 3.5%NaCl solution for 25 h (a), 125 h (b) and 300 h (c)
Fig.3  Surface morphologies of Zn-Al-Mg coating after immersion in 3.5%NaCl solution for 25 h (a), 125 h (b) and 300 h (c)
Fig.4  Potential-time curves of Fe and three zinc alloy coatings in 3.5%NaCl solution
Fig.5  Polarization curves of the steel sheets with three zinc-alloy coatings after immersion in 3.5%NaCl solution for 25 h (a), 125 h (b) and 300 h (c)
Fig.6  Corrosion potential (a) and corrosion current density (b) of the steel sheets with three zinc-alloy coatings after immersion in 3.5%NaCl solution for different time
Fig.7  Nyquist plots of the steel sheets with different zinc-alloy coatings after immersion in 3.5%NaCl solution for 25 h (a), 125 h (b) and 300 h (c)
[1] Shi Y Y, Zhang Z, Zhang J Q, et al.Review of atmospheric corrosion of zinc and zinc alloy[J]. J. Chin. Soc. Corros. Prot., 2005, 25: 373(施彦彦, 张昭, 张鉴清等. 锌及其合金的大气腐蚀研究现状[J]. 中国腐蚀与防护学报, 2005, 25: 373)
[2] Zhang H, Qi H B, Du C W, et al.Corrosion behavior of the hot-dip galvanized steel sheet under adhesion of an alkaline mud in hot-humid environment[J]. Acta Metall. Sin., 2009, 45: 338(张红, 齐慧滨, 杜翠薇等. 湿热环境中碱性泥浆附着下镀锌钢板的腐蚀行为[J]. 金属学报, 2009, 45: 338)
[3] Liu Y W, Wang Z Y, Cao G W, et al.Corrosion behavior of Zn in simulated acid rain atmospheric environment[J]. Chin. J. Nonferrous Met., 2015, 25: 375(刘雨薇, 王振尧, 曹公望等. Zn在模拟酸雨大气环境中的腐蚀行为[J]. 中国有色金属学报, 2015, 25: 375)
[4] Guttman H, Belisle S, Esson D G.Galfan-a new coating for automotive tubing [R]. SAE, 1986
[5] Zhang X, Leygraf C, Wallinder I O.Atmospheric corrosion of Galfan coatings on steel in chloride-rich environments[J]. Corros. Sci., 2013, 73: 62
[6] Xiong Z L, Zhang Y F, Jiang T.Performance characteristic and development situation of zinc-aluminum alloy plating coat[J]. Hebei Metall., 2012, (4): 8(熊自柳, 张雲飞, 姜涛. 锌铝合金镀层的性能特点与发展现状[J]. 河北冶金, 2012, (4): 8)
[7] Komatsu A, Izutani H, Tsujimura T, et al.Corrosion resistance and protection mechanism of hot-dip Zn-Al-Mg-alloy coated steel sheet under accelerated corrosion environment[J]. Tetsu-to-Hagane, 2000,86: 534
[8] Nishimura K, Kato K, Shindo H.Highly corrosion-resistant Zn-Mg alloy galvanized steel sheet for building construction materials[J]. Nippon Steel Tech. Rep., 2000, 81: 85
[9] Morimoto Y, Honda K, Nishimura K, et al.Excellent corrosion-resistant Zn-Al-Mg-Si alloy hot-dip galvanized steel sheet "SUPER DYMA"[J]. Nippon Steel Tech. Rep., 2003, 87: 24
[10] Tano K, Higuchi S.Development and properties of zinc-aluminum alloy coated steel sheet with high corrosion resistance (super zinc)[J]. Nippon Steel Tech. Rep., 1985, 25: 29
[11] Uranaka M, Shimizu T.Corrosion resistance of hot-dip Zn-6%Al-3%Mg alloy coated steel sheet used in automotive parts[J]. Metall.Sci. Technol., 2012, 30: 29
[12] Stellnberger K H, Hagler J, Wiesinger S, et al.Corrosion protection system for metals and pigment therefor [P]. German Patent: DE102007021602 A1, 2008
[13] Schuerz S, Fleischanderl M, Luckeneder G H, et al.Corrosion behaviour of Zn-Al-Mg coated steel sheet in sodium chloride-containing environment[J]. Corros. Sci., 2009, 51: 2355
[14] Schinkinger B, Zugner S.Zinc magnesium 70-implementation of a new metallic coating within the BMW group [A]. Proceedings of 4th International Conference on Steels in Cars and Trucks[C]. 2014: 524
[15] Angeli G, Brisberger R, Bulter M, et al.Zinc-magnesium-aluminium coatings for automotive Industry [A]. Proceedings of 9th International Conference on Zinc and Zinc Alloy Coated Steel Sheet [C]. Beijing: Metallurgical Industry Press, 2013: 632
[16] Morimoto Y, Kurosaki M, Honda K, et al.The corrosion resistance of Zn-11%Al-3%Mg-0.2%Si hot-dip galvanized steel sheet[J]. Tetsu-to-Hagane, 2003, 89: 161
[17] VDA 239-100. Steel sheet for cold formingDA 239-100. Steel sheet for cold forming[S]. 2011
[18] Prosek T, Persson D, Stoulil J, et al.Composition of corrosion products formed on Zn-Mg, Zn-Al and Zn-Al-Mg coatings in model atmospheric conditions[J]. Corros. Sci., 2014, 86: 231
[19] Xu H, Ji Y J.Study on corrosion properties of a new hot-dip galvanizing Zn-Al-Mg alloyed coating[J]. China Sci. Technol. Inf., 2011, (7): 170(许红, 冀英杰. 热浸镀新型Zn-Al-Mg合金镀层耐蚀性能研究[J]. 中国科技信息, 2011, (7): 170)
[20] Li X, Du H Y, Zhang J, et al.Electrochemical protection performance of hot-dipping Zn and Zn-AI alloys[J]. Marine Sci., 2005, 29(7): 33(李鑫, 杜鸿雁, 张杰等. 热浸镀用锌及锌铝合金的恒电流电化学性能[J]. 海洋科学, 2005, 29(7): 33)
[21] Jiang G R, Teng H X, Wang H Q, et al.Selective oxidation in press hardening steel during annealing with different dew points[A]. Proceedings of 9th International Conference on Zinc and Zinc Alloy Coated Steel Sheet [C]. Beijing: Metallurgical Industry Press, 2013: 139
[22] Mondal A, Chakraborty A, Pathak A, et al.Estimation of the Fe-Zn intermetallic layer thickness in galvannealed coating through electrochemical route [A]. Galvatech 2015 Conference Proceedings[C]. Warrendale, PA: Association for Iron & Steel Technology, 2015: 317
[23] Li S W, Tu G, Hao Y F, et al.Study on the Corrosion Mechanism of Zn-5Al-0.5Mg-0.08Si coating[J]. J. Metall., 2011, 2011: 1
[24] Prosek T, Nazarov A, Bexell U, et al.Corrosion mechanism of model zinc-magnesium alloys in atmospheric conditions[J]. Corros. Sci., 2008, 50: 2216
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[9] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[10] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[11] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[12] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[13] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[14] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[15] Delin LAI,Gang KONG,Chunshan CHE. Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
No Suggested Reading articles found!