Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (5): 477-482    DOI: 10.11902/1005.4537.2013.205
Current Issue | Archive | Adv Search |
Effect of Additives Mn(NO3)2 and/or Na2MoO4 on Micro-morphology and Corrosion Performance of Phosphate Coating on AZ31B Magnesium Alloy
CUI Xuejun1,2(), BAI Chengbo2, ZHU Yibo2, MIN Hongyun2, WANG Rong2, LIN Xiuzhou1,2
1. Material Corrosion and Protection Key Laboratory of Sichuan Province, Zigong 643000, China
2. College of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
Download:  HTML  PDF(4154KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A phosphate coating was prepared on AZ31B Mg alloy by chemical conversion process in a phosphorizing bath with additives Mn(NO3)2 and/or Na2MoO4, respectively. The effect of the additives on surface micromorphology and corrosion performance of the coatings were investigated by scanning electron microscope (SEM), electrochemical workstation and CuSO4 spot test. The results show that grain size of the films firstly decreases and then increases with of the increasing Mn(NO3)2 amount in a range of 0~2 g/L, correspondingly the corrosion resistance of the coatings becomes better and then worse; the grain size of the coating significantly reduces and then increases with the increasing Na2MoO4 amount in a range of 0~0.5 g/L, while the corrosion resistance of the coating rises up substantially; the surface morphology and corrosion resistance of the coatings can also be improved by simultaneously adding Mn(NO3)2 and Na2MoO4, but of which the effectiveness is inferior to that by merely adding Na2MoO4 in the phosphorizing bath. Through the above analysis, it follows that Mn(NO3)2 may play a weak role in enhancing the corrosion performance of the coatings; but it is interesting to note that by adding only 0.25 g/L Mn(NO3)2 to the phosphorizing bath the prepared coatings become much denser with better corrosion resistance.

Key words:  AZ31B Mg alloy      chemical conversion coating      additive      micromorphology      corrosion resistance     
ZTFLH:  TG174.4  

Cite this article: 

CUI Xuejun, BAI Chengbo, ZHU Yibo, MIN Hongyun, WANG Rong, LIN Xiuzhou. Effect of Additives Mn(NO3)2 and/or Na2MoO4 on Micro-morphology and Corrosion Performance of Phosphate Coating on AZ31B Magnesium Alloy. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 477-482.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.205     OR     https://www.jcscp.org/EN/Y2014/V34/I5/477

Fig.1  Preparation process of phosphate conversion coating on AZ31B Mg alloy
Fig.2  Surface morphologies of the phosphate coatings produced in 0 g/L (a), 1 g/L (b), 1.5 g/L (c) and 2 g/L (d) Mn(NO3)2-containing baths
Fig.3  Surface morphologies of the coatings produced in 0.1 g/L (a), 0.25 g/L (b) and 0.5 g/L (c) Na2MoO4-containing baths
Fig.4  Surface morphologies of the coatings produced in phosphate solutions containing 0.25 g/L Na2MoO4+0.5 g/L Mn(NO3)2 (a) and 0.25 g/L Na2MoO4+1.0 g/L Mn(NO3)2 (b)
Fig.5  Polarization curves of the coatings obtained in phosphate bath with Mn(NO3)2 (a), Na2MoO4 (b) and Na2MoO4+Mn (NO3)2 (c) in 3.5%NaCl solution
Condition Additive / gL-1 -Ecorr / mV icorr / μAcm-2 Rp / kΩcm2
Base solution 0 1435 5.315 8.401
Mn(NO3)2 1.0 1456 2.915 1.057
1.5 1458 1.057 38
2.0 1510 3.875 11.012
Na2MoO4 0.1 1359 2.027 11.883
0.25 1327 0.462 55.558
0.5 1445 6.870 4.252
Na2MoO4/Mn(NO3)2 0.25/0.5 1423 1.419 36.129
0.25/1.0 1434 5.235 9.086
  
Fig.6  Relationship between corrosion resistance of phosphate conversion coatings and content of additives
[1] Shi C S, Li H D. A proposal on accelerating development of metallic magnesium industry in China[J]. Mater. Rev., 2001, 15(4): 5-7
(师昌绪, 李恒德. 加速我国金属镁工业发展的建议[J]. 材料导报,2001, 15(4): 5-7)
[2] Kainer K U, Srinivasan P B, Blawert C, et al. Corrosion of magnesium and its alloys. In: Richardson T J A, ed. Shreir's Corrosion [M]. Oxford: Elseiver, 2010
[3] Kelvii W G. eA review of magnesium/magnesium alloys corrosion and its protection[J]. Recent Pat. Corros. Sci., 2010, 2: 13-21
[4] Shi H Y, Yang C J, Zhang M. Corrosion resistance of micro-arc oxidation and sol-gel composite coating on magnesium alloy by cyclic heat-NaCl solution spray/dry test[J]. J. Chin. Soc. Corros. Prot., 2013, 33(5): 436-440
(时惠英, 杨朝静, 张勉. AZ31B镁合金表面微弧氧化-溶胶凝胶复合膜层干、湿热交替条件下耐蚀性研究[J]. 中国腐蚀与防护学报, 2013, 33(5): 436-440)
[5] Hu R G, Zhang S, Bu J F, et al. Recent progress in corrosion protection of magnesium alloys by organic coatings[J]. Prog. Org. Coat., 2012, 73: 129-141
[6] Wang S Y, Xia Y P, Liu L. Influences of C3H8O3 concentration on formation and characteristics of MAO coatings on AZ91D magnesium alloy[J]. J. Chin. Soc. Corros. Prot., 2013, 33(3): 235-240
(王淑艳, 夏永平, 刘莉. C3H8O3含量对AZ91D镁合金微弧氧化过程及膜层特性的影响[J] . 中国腐蚀与防护学报,2013, 33(3): 235-240)
[7] Chen X B, Birbilis N, Abbott T B. Effect of [Ca2+] and [PO43-] levels on the formation of calcium phosphate conversion coatings on die-cast magnesium alloy AZ91D[J] . Corros. Sci., 2012, 55: 226-232
[8] Amini R, Sarabi A A. The corrosion properties of phosphate coating on AZ31 magnesium alloy: The effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent[J] . Appl. Surf. Sci., 2011, 257: 7134-7139
[9] Niu L Y. Investigation on film formation mechanism, microstructure and performances of complex zinc phosphate coatings of magnesium alloy [D]. Changchun: Jilin University, 2006
(牛丽媛. 镁合金锌系复合磷化膜成膜机理、微观结构及性能的研究 [D] . 长春: 吉林大学, 2006)
[10] Zhou W Q. Research and corrosion resistance of phosphate chemical conversion film of magnesium alloy [D] . Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2004
(周婉秋. 镁合金磷酸盐化学转化膜及其耐蚀性研究 [D]. 沈阳:中国科学院金属研究所, 2004)
[11] Mosialek M, Mordarski G, Nowak P, et al. Phosphate-permanganate conversion coatings on the AZ81 magnesium alloy: SEM, EIS and XPS studies [J]. Surf. Coat. Technol., 2011, 206: 51-62
[12] Zeng R C, Lan Z D. Influence of bath temperature of conversion treatment process on corrosion resistance of zinc calcium phosphate conversion film on AZ31 magnesium alloy[J]. Chin. J. Nonferrous Met., 2010, 20(8): 1461-1466
(曾荣昌, 兰自栋. 镀液温度对AZ31 镁合金表面锌钙系磷酸盐转化膜耐蚀性的影响[J] . 中国有色金属学报, 2010, 20(8): 1461-1466)
[13] Fouladi M, Amadeh A. Effect of phosphating time and temperature on microstructure and corrosion behavior of magnesium phosphate coating[J] . Electrochim. Acta, 2013, 106: 1-12
[14] Cui X J, Liu C H, Yang R S, et al. Duplex-layered manganese phosphate conversion coating on AZ31 Mg alloy and its initial formation mechanism [J]. Corros. Sci., 2013, 76: 474-485
[15] Zhao M. A thesis submitted in fully fulfillment of the requirements for the degree of doctor of engineering [D]. Wuhan: Huazhong University of Science and Technology, 2006
(赵明. 镁合金表面无铬化学转化处理新技术研究 [D]. 武汉: 华中科技大学, 2006)
[16] Zhou W Q, Shan D Y, Han E-H, et al. Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy[J] . Corros. Sci., 2008, 50(2): 329-337
[17] Liu F, Shan D Y, Huan E-H, et al. Effect of Ca2+ on phosphate conversion coating on magnesium alloy[J] . Chin. J. Nonferrous Met., 2008, 18(10): 1825-1830
(刘锋, 单大勇, 韩恩厚等. 钙对镁合金表面锰系转化膜的影响 [J]. 中国有色金属学报, 2008, 18(10): 1825-1830)
[18] Liu F, Shan D Y, Zeng R C, et al. Effect of Mn2+ consumption in phosphate conversion solution on performance of phosphorized films on AZ31 magnesium alloy surface[J] . Corros. Sci. Prot. Technol., 2010, 22(5): 377-379
(刘锋, 单大勇, 曾荣昌等. AZ31变形镁合金锰系转化膜溶液中锰消耗对膜性能的影响[J]. 腐蚀科学与防护技术, 2010, 22(5): 377-379)
[19] Cui X J, LIiu C H, Yang R S, et al. Phosphate film free of chromate, fluoride and nitrite on AZ31 magnesium alloy and its corrosion resistance[J] . Trans. Nonferrous Met. Soc. China, 2012, 22(11): 2713-2718
[20] Cui X J, Zhou J X, Lin X Z, et al. Growing process and formation mechanism of manganese phosphate conversion film of magnesium alloy AZ31 [J]. Chin. J. Nonferrous Met., 2012, 22(1): 15-21
(崔学军, 周吉学, 林修洲等. 镁合金AZ31锰系磷化膜的生长过程和形成机理研究[J] . 中国有色金属学报, 2012, 22(1): 15-21)
[21] Cui X J, Liu C H, Li M T, et al. Effects of parameters on surface morphology and corrosion resistance of phosphate film for AZ31 magnesium alloy [J]. J. Chin. Soc. Corros. Prot., 2012, 32(6): 507-512
(崔学军, 刘春海, 李明田等. 工艺参数对AZ31镁合金磷化膜耐蚀性能及表面形貌的影响[J] . 中国腐蚀与防护学报, 2012, 32(6): 507-512)
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[9] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[10] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[11] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[12] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[13] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[14] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[15] Delin LAI,Gang KONG,Chunshan CHE. Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
No Suggested Reading articles found!