Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (5): 353-359    DOI: 1005-4537(2009)05-0353-07
  研究报告 本期目录 | 过刊浏览 |
外加电位对X70管线钢在库尔勒土壤模拟溶液中应力腐蚀开裂敏感性的影响
张亮;李晓刚;杜翠薇;梁平
北京科技大学材料科学与工程学院腐蚀与防护中心 北京 100083
EFFECT OF APPLIED POTENTIALS ON STRESS CORROSION CRACKING OF X70 PIPELINE STEEL IN SIMULATED KU'ERLE SOIL SOLUTION
ZHANG Liang; LI Xiaogang; DU Cuiwei; LIANG Ping
Corrosion and Protection Center; School of Materials Science and Engineering; University of Science and Technology Beijing;Beijing 100083
全文: PDF(3555 KB)  
摘要: 

采用慢应变速率拉伸试验(SSRT)研究了不同外加电位下X70管线钢在库尔勒土壤模拟溶液中的应力腐蚀开裂(SCC)行为,并用扫描电镜分析了不同电位下的断面形貌。结果表明,X70管线钢在库尔勒土壤模拟溶液中具有SCC敏感性;在E corr附近施加弱极化时,应力腐蚀开裂敏感性增加;施加强阳极电位时,发生强烈阳极溶解,导致阳极溶解断裂;施加强阴极电位时,析氢过程加强,导致氢致应力腐蚀断裂。

关键词 X70管线钢应力腐蚀开裂模拟溶液电位    
Abstract

Stress corrosion cracking (SCC) behavior of X70 pipeline steel in simulated Ku$^\prime$erle soil solution at different applied potentials was investigated using slow strain rate testing (SSRT). Morphology of X70 pipeline steel fracture surface at different applied potentials was observed by scanning electron microscope (SEM). The results showed that X70 pipeline steel was susceptible to SCC in simulated solutions. It was found that low potentials applied increased susceptibility to SCC at open circuit potential (OCP). The fracture mechanism followed anodic dissolution mechanism of SCC. The precipitation of hydrogen increased hydrogen diffusion into the metal, hence increased susceptibility to SCC under higher cathode potential in simulated solution. The fracture followed hydrogen induced cracking mechanism.

Key wordsX70 pipeline steel    stress corrosion cracking    simulated solution, potential
收稿日期: 2007-12-06     
ZTFLH: 

TG172.8

 
基金资助:

国家十一五科技支撑计划(2006BAK02B01);国家科技基础条件平台建设项目(2005DKA10400)资助

通讯作者: 李晓刚     E-mail: lixiaogang99@263.net
Corresponding author: LI Xiaogang     E-mail: lixiaogang99@263.net
作者简介: 张亮,1980年生,男,博士生,研究方向为材料腐蚀与防护

引用本文:

张亮 李晓刚 杜翠薇 梁平. 外加电位对X70管线钢在库尔勒土壤模拟溶液中应力腐蚀开裂敏感性的影响[J]. 中国腐蚀与防护学报, 2009, 29(5): 353-359.
ZHANG Liang. EFFECT OF APPLIED POTENTIALS ON STRESS CORROSION CRACKING OF X70 PIPELINE STEEL IN SIMULATED KU'ERLE SOIL SOLUTION. J Chin Soc Corr Pro, 2009, 29(5): 353-359.

链接本文:

https://www.jcscp.org/CN/1005-4537(2009)05-0353-07      或      https://www.jcscp.org/CN/Y2009/V29/I5/353

[1] Albarran J L, Aguilar A, Martinez L, et al. Corrosion and cracking behavior in an API X-80 steel exposed to sour gas environment[J]. Corrosion, 2002, 58(9): 783-792
[2] Koh S U, Kim J S, Yang B Y, et al. Effect of line pipe steel microstructure on susceptibility to sulfide stress cracking [J]. Corrosion, 2004,60(3): 244-253
[3] Eadie R L, Szklarz K E, Sutherby R L. Corrosion fatigue and near-neutral pH stress corrosion cracking of pipeline steel and the effect of hydrogen sulfide [J]. Corrosion, 2005,61(2): 167-173
[4] Zhao M C, Yang K. Strengthening and improvement of sulfide stress cracking resistance in acicular ferrite pipeline steels by nano-sized carbonitrides [J]. Scr. Mater., 2005,52: 881-886
[5] Gu B, Luo J, Mao X. Hydrogen-facilitated anodic dissolution-type stress corrosion cracking of pipeline steels in near-neutral pH solution [J]. Corrosion, 1999, 55(1): 96-106
[6] Gonzalez-Rodriguez J G, Casales M, Salinas-Bravo V M, et al. Effect of microstructure on the stress corrosion cracking of X-80 pipeline steel in diluted sodium bicarbonate solutions [J]. Corrosion, 2002,58(7): 584-590
[7] Park J J, Pyun S I, Na K H, et al. Effect of passivity of the oxide film in low-pH stress corrosion cracking of API 5L X-65 pipeline steel in bicarbonate solution [J]. Corrosion,2002, 58(4): 329-336
[8] Parkins R N, Beavers J A. Some effects of strain rate on the transgranular stress corrosion cracking of ferritic steels in dilute near-neutral-pH solutions [J]. Corrosion,2003, 59(3): 258-271
[9] Manfredi C, Otegui J L. Failures by SCC in buried pipelines [J]. Eng. Failure Anal., 2002, 9: 495-509
[10] Wang J Q, Atrens A. SCC initiation for X65 pipeline steel in the “high” pH carbonate/bicarbonate solution [J]. Corros.Sci., 2003, 45(10): 2199-2217
[11] Chu R, Chen W, Wang S H, et al. Microstructure dependence of stress corrosion craking initiation in X65 pipeline steel exposed to a near-neutral pH soil environment [J]. Corrosion, 2004, 60(3): 275-282
[12] Lu B T, Luo J L. Relationship between yield strength and near-neutral pH stress corrosion cracking resistance of pipeline steels-an effect of microstructure[J]. Corrosion, 2006, 62(2): 129-138
[13] Chen W, King F, Vokes E. Characteristics of near-neutral-pH stress corrosion cracks in an X-65 pipeline [J]. Corrosion, 2002, 58(3): 267-277
[14] Yang W. Some new advances in research of SCC of buried oil and gas pipelines [J]. Corros. Prot., 2003, 24(11): 461-467
     (杨武. 埋地油气管线应力腐蚀破裂研究的一些新进展 [J]. 腐蚀与防护, 2003, 24(11): 461-467)
[15] Fang B Y, Wang J Q, Zhu Z Y, et al. The stress corrosion cracking of buried pipelines in near-neutral-pH and high-pH solutions [J]. Acta Metall. Sin., 2001, 37(5): 452-458
     (方丙炎, 王俭秋, 朱自勇等. 埋地管道在近中性pH和高pH环境中的应力腐蚀破裂 [J]. 金属学报, 2001, 37(5): 453-458)
[16] Jin M H, Meng X L, Huang H T, et al. Corrosion mechanism of carbon steel in four types of soil [J]. J. HuaZhong Univ. Sci.Technol. (Nat. Sci.), 2002, 30(7): 104-107
     (金名惠, 孟厦兰, 黄辉桃等. 碳钢在我国四种土壤中腐蚀机理的研究 [J].华中科技大学学报(自然科学版), 2002, 30(7): 104-107)
[17] Rebak R B, Xia Z, Safruddin R, et al. Effect of solution composition and electrochemical potential on stress corrosion cracking of X-52 pipeline steel [J]. Corrosion,1996, 52(5): 396-405

[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[5] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[6] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[7] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[8] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[9] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[10] 丁国清,李向阳,张波,杨朝晖,黄桂桥,杨海洋,刘凯吉. 金属材料在天然海水中的腐蚀电位及其变化规律[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[11] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[12] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[13] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[14] 施远,金洙吉,姜冠楠,刘作涛,周忠正,王泽北. YG15硬质合金电化学腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 253-259.
[15] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.