|
|
常用钛合金焊接接头显微组织结构及对材料性能的影响 |
佟向瑜1,2, 徐玮辰1( ), 王秀通1, 王优强2, 段继周1 |
1 中国科学院海洋研究所海洋关键材料重点实验室 中国科学院海洋环境腐蚀与生物污损重点实验室 青岛 266071 2 青岛理工大学机械与汽车工程学院 青岛 266525 |
|
Summary on Effect of Weling Techniques on Microstructure and Mechanical Properties of TC4 Ti-alloy Weld Joints |
TONG Xiangyu1,2, XU Weichen1( ), WANG Xiutong1, WANG Youqiang2, DUAN Jizhou1 |
1 Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China 2 School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266525, China |
引用本文:
佟向瑜, 徐玮辰, 王秀通, 王优强, 段继周. 常用钛合金焊接接头显微组织结构及对材料性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
Xiangyu TONG,
Weichen XU,
Xiutong WANG,
Youqiang WANG,
Jizhou DUAN.
Summary on Effect of Weling Techniques on Microstructure and Mechanical Properties of TC4 Ti-alloy Weld Joints[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1161-1174.
[1] |
Ren T M. The current status and development trends of titanium and titanium alloy applications abroad [J]. Rare Met. Mater. Eng., 1983, 12(4): 100
|
[1] |
任铁梅. 国外钛和钛合金应用现状及发展动向 [J]. 稀有金属材料与工程, 1983, 12(4): 100
|
[2] |
Song D J, Niu L, Yang S L. Research on application technology of titanium alloy in marine pipeline [J]. Rare Met. Mater. Eng., 2020, 49: 1100
|
[2] |
宋德军, 牛 龙, 杨胜利. 船舶海水管路钛合金应用技术研究 [J]. 稀有金属材料与工程, 2020, 49: 1100
|
[3] |
Li C G. Investigation on the application of titanium alloys in Boeing aircraft [J]. Aviat. Mater., 1984, (1): 47
|
[3] |
李成功. 波音公司飞机钛合金应用情况考察 [J]. 航空材料, 1984, (1): 47
|
[4] |
Liu J Y, Dong L J, Zhang Y, et al. Research progress on sulfide stress corrosion cracking of dissimilar weld joints in oil and gas fields [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 863
|
[4] |
刘久云, 董立谨, 张 言 等. 油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 863
doi: 10.11902/1005.4537.2023.269
|
[5] |
Liao M X, Liu J, Dong B J, et al. Effect of salt spray environment on performance of 1Cr18Ni9Ti brazed joint [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1312
|
[5] |
廖敏行, 刘 俊, 董宝军 等. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1312
doi: 10.11902/1005.4537.2022.385
|
[6] |
Zhang W F, Wang Y H, Li Y, et al. Phase transformation, microstructures and tensile properties of TA15 Titanium Alloy [A]. Proceedings of the 14th National Titanium and Titanium Alloy Academic Exchange Conference (Volume I) [C]. Shanghai, 2010
|
[6] |
张旺峰, 王玉会, 李 艳 等. TA15钛合金的相变、组织与拉伸性能 [A]. 第十四届全国钛及钛合金学术交流会论文集(上册) [C]. 上海, 2010
|
[7] |
Lütjering G, Williams J C, Gysler A. Microstructure and mechanical properties of titanium alloys [A]. Microstructure and Mechanical Properties of Titanium Alloys [M]. 2000: 1
|
[8] |
Liu H J, Zhou L, Liu Q W. Microstructural characteristics and mechanical properties of friction stir welded joints of Ti-6Al-4V titanium alloy [J]. Mater. Design, 2010, 31: 1650
|
[9] |
Balasubramanian T S, Balakrishnan M, Balasubramanian V, et al. Influence of welding processes on microstructure, tensile and impact properties of Ti-6Al-4V alloy joints [J]. Trans. Nonferr. Met. Soc. China, 2011, 21: 1253
|
[10] |
Sun W J, Wang S L, Chen Y H, et al. Development of advanced welding technologies for titanium alloys [J]. Aeronaut. Manuf. Technol., 2019, 62: 63
|
[10] |
孙文君, 王善林, 陈玉华 等. 钛合金先进焊接技术研究现状 [J]. 航空制造技术, 2019, 62: 63
|
[11] |
Chen Y B. Modern Laser Welding Technology [M]. Beijing: Science Press, 2005
|
[11] |
陈彦宾. 现代激光焊接技术 [M]. 北京: 科学出版社, 2005
|
[12] |
Liu Y Y, Hu Y N, Wu S C. High-temperature mechanical behavior of laser welded near α Ti60 alloy [J]. J. Beijing Univ. Technol., 2024, 50(2): 123
|
[12] |
刘宇云, 胡雅楠, 吴圣川. 激光焊接近α型Ti60合金高温力学行为 [J]. 北京工业大学学报, 2024, 50(2): 123
|
[13] |
Zhang S W, Wang J, Si H X, et al. Microstructure and mechanical properties of TC4 titanium alloy by autogenous laser welding [J]. Weld. Join., 2024, (6): 33
|
[13] |
张世伟, 王 珏, 佀好学 等. TC4钛合金激光自熔焊焊接组织及性能 [J]. 焊接, 2024, (6): 33
|
[14] |
Xue A T, Lin X, Wang L L, et al. Achieving fully-equiaxed fine β-grains in titanium alloy produced by additive manufacturing [J]. Mater. Res. Lett., 2023, 11: 60
|
[15] |
Zhang M, Wang Q, Li J H, et al. Microstructure numerical simulation of weld pool in rapid solidification [J]. Trans. China Weld. Inst., 2013, 34(7): 1
|
[15] |
张 敏, 汪 强, 李继红 等. 焊接熔池快速凝固过程的微观组织演化数值模拟 [J]. 焊接学报, 2013, 34(7): 1
|
[16] |
Wen P, Zheng S Q, Kenji S, et al. Experimental research on laser narrow gap welding with filling hot wire [J]. Chin. J. Lasers, 2011, 38: 1103004
|
[16] |
温 鹏, 郑世卿, 荻崎贤二 等. 填充热丝激光窄间隙焊接的实验研究 [J]. 中国激光, 2011, 38: 1103004
|
[17] |
Ma J K, Li J J, Wang Z J, et al. Bonding zone microstructure and mechanical properties of forging-additive hybrid manufactured Ti-6Al-4V alloy [J]. Acta Metall. Sin., 2021, 57: 1246
|
[17] |
马健凯, 李俊杰, 王志军 等. 锻造-增材复合制造Ti-6Al-4V合金结合区显微组织及力学性能 [J]. 金属学报, 2021, 57: 1246
doi: 10.11900/0412.1961.2020.00416
|
[18] |
Zhang S W, Cong B Q, Zeng Z, et al. Tailoring weldability for microstructures in laser-welded near-α titanium alloy: insights on mechanical properties [J]. Metals, 2024, 14: 690
|
[19] |
Hong X M, Wang Y Q, Li N, et al. Effect of aging on microstructures and localized corrosion of Custom455 martensitic age-hardening stainless steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1285
|
[19] |
洪孝木, 王永强, 李 娜 等. 时效处理对马氏体时效硬化不锈钢显微组织和局部腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 1285
doi: 10.11902/1005.4537.2023.365
|
[20] |
Li X X, Xu D S, Yang R. CPFEM study of high temperature tensile behavior of duplex titanium alloy [J]. Chin. J. Mater. Res., 2019, 33: 241
doi: 10.11901/1005.3093.2018.514
|
[20] |
李学雄, 徐东生, 杨 锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究 [J]. 材料研究学报, 2019, 33: 241
doi: 10.11901/1005.3093.2018.514
|
[21] |
Li G W, Wang Y S, Liang Y H, et al. Microstructure and mechanical properties of laser welded Ti-6Al-4V (TC4) titanium alloy joints [J]. Opt. Laser Technol., 2024, 170: 110320
|
[22] |
Hrabe N, White R, Lucon E. Effects of internal porosity and crystallographic texture on Charpy absorbed energy of electron beam melting titanium alloy (Ti-6Al-4V) [J]. Mater. Sci. Eng., 2019, 742A: 269
|
[23] |
Chang H, Zhou L, Zhang T J. Review of solid phase transformation in titanium alloys [J]. Rare Met. Mater. Eng., 2007, 36: 1505
|
[24] |
Miao Y G, Wang Q L, Li C W, et al. Characterization of laser arc hybrid welding process for medium-thick titanium alloy plate [J]. Trans. China Weld. Inst., 2022, 43(8): 42
|
[24] |
苗玉刚, 王清龙, 李春旺 等. 中厚板钛合金激光-CMT复合焊接工艺特性分析 [J]. 焊接学报, 2022, 43(8): 42
doi: 10.12073/j.hjxb.20220330002
|
[25] |
Fan Z C, Feng H W. Study on selective laser melting and heat treatment of Ti-6Al-4V alloy [J]. Results Phys., 2018, 10: 660
|
[26] |
Huang W, Wang S G, Li L Z, et al. Laser beam welding of titanium alloy and microstructure and mechanical properties of welded joint [J]. Dev. Appl. Mater., 2019, 34(2): 20
|
[26] |
黄 炜, 王少刚, 李立泽 等. 钛合金激光焊及其接头的显微组织与力学性能 [J]. 材料开发与应用, 2019, 34(2): 20
|
[27] |
Kovačócy P, Šimeková B, Kovaříková I, et al. Investigation of the microstructure and mechanical characteristics of disk laser-welded Ti-6Al-4V alloy joints [J]. J. Mater. Eng. Perform., 2020, 29: 593
|
[28] |
Fang X Y, Liu H, Zhang J X. Microstructure and mechanical properties of pulsed laser beam welded Ti-2Al-1.5Mn titanium alloy joints [J]. J. Mater. Eng. Perform., 2014, 23: 1973
|
[29] |
He Y F, Chen D G, Zhang L, et al. Study on microstructure and properties of TC4 titanium alloy MIG welding joints after heat treatment [J]. Iron Steel Vanadium Titanium, 2021, 42(6): 164
|
[29] |
何逸凡, 陈东高, 张 龙 等. TC4钛合金MIG焊接头热处理后组织性能研究 [J]. 钢铁钒钛, 2021, 42(6): 164
|
[30] |
Peng Y, Zhang J M, Yang G K, et al. Multi-pass butt welding of thick TA5 titanium-alloy plates by MIG: Microstructure and properties [J]. Mater. Today Commun., 2024, 39: 108965
|
[31] |
Cao C, Liu P W, Zou Y Q, et al. Microstructure and mechanical properties of additively manufactured Ti-6Al-4V alloy based on large area, high-resolution EBSD mapping [J]. J. Mater. Res. Technol., 2024, 33: 2812
|
[32] |
Kang Y. Effects of welding current on microstructure and elements diffusion of Ti3Al/TC11 alloy weld seam [J]. Heat Treat. Met., 2014, 39(3): 75
|
[32] |
康 彦. 焊接电流对Ti3Al/TC11合金焊缝区组织及合金元素扩散的影响 [J]. 金属热处理, 2014, 39(3): 75
|
[33] |
Wang J L, Gan Z H, Chen Y M, et al. Influence of different cooling rates on microstructure of Ti-6Al-4V titanium alloy thermal simulation specimens [J]. Trans. China Weld. Inst., 2011, 32(8): 93
|
[33] |
王锦林, 甘章华, 陈义明 等. 不同冷却速度对Ti-6Al-4V钛合金热模拟试样组织的影响 [J]. 焊接学报, 2011, 32(8): 93
|
[34] |
Mu C Y. Microstructure and grain size of TC4 titanium alloy welded joints under different welding processes [J]. Foundry Technol., 2015, 36: 1267
|
[34] |
穆春艳. 不同焊接工艺下TC4钛合金焊接接头的晶粒尺寸和微观组织变化 [J]. 铸造技术, 2015, 36: 1267
|
[35] |
Li J, Wang H, Qu S Y, et al. Effect of welding thermal cycle parameters in the heat affected zone of steel EH40 for on the microstructure and properties high heat input welding [J]. J. Univ. Sci. Technol. Beijing, 2012, 34: 788
|
[35] |
李 静, 王 华, 曲圣昱 等. 焊接热循环参数对大线能量焊接用钢EH40热影响区组织和性能的影响 [J]. 北京科技大学学报, 2012, 34: 788
|
[36] |
Zhang J, Zhou X Q. Study on the major parameters of Q345 welding thermal cycle based on Simufact [J]. Electr. Weld. Mach., 2015, 45(9): 167
|
[36] |
张 建, 周训谦. 基于Simufact的Q345焊接热循环主要参数研究 [J]. 电焊机, 2015, 45(9): 167
|
[37] |
Wang J H, Wei S Z, Rao W J, et al. Microstructure characteristics of Ti/Al interface using CA-MIG heating processing [J]. China Metall., 2022, 32(3): 55
|
[37] |
王建宏, 魏守征, 饶文姬 等. CA-MIG热源处理下钛/铝异质合金界面显微组织特性 [J]. 中国冶金, 2022, 32(3): 55
doi: 10.13228/j.boyuan.issn1006-9356.20210883
|
[38] |
He Y F, Chen D G, Zhang L, et al. Research on microstructure and properties of TC4 titanium ahoy MIG welded joints after heat treatment [J]. Iron Steel Vanadium Titanium, 2021, 42(6): 164
|
[38] |
何逸凡, 陈东高, 张 龙 等. TC4钛合金MIG焊接头热处理后组织性能研究 [J]. 钢铁钒钛, 2021, 42(6): 164
|
[39] |
Ma Y, Han X H, Li G Q, et al. Microstructure and properties of laser-MIG hybrid welded TC4 titanium alloy joints [J]. Electr. Weld. Mach., 2023, 53(8): 93
|
[39] |
马 寅, 韩晓辉, 李刚卿 等. TC4钛合金激光-MIG复合焊接头组织性能 [J]. 电焊机, 2023, 53(8): 93
|
[40] |
Jeyaprakash N, Haile A, Arunprasath M. The parameters and equipments used in TIG welding: A review [J]. Int. J. Eng. Sci., 2015, 4(2): 11
|
[41] |
Zhang H, Zu G Q, Wang D C, et al. Research on TIG welding organizational and performance of TC4 forge alloy [J]. Iron Steel Vanadium Titanium, 2024, 45(5): 63
|
[41] |
张 航, 祖国庆, 王大臣 等. TC4钛合金锻态板材TIG焊后组织与性能研究 [J]. 钢铁钒钛, 2024, 45(5): 63
|
[42] |
Liu Q Y, Wu D, Wang Q Z, et al. Progress and perspectives of joints defects of laser-arc hybrid welding: A review [J]. Int. J. Adv. Manuf. Technol., 2024, 130: 111
|
[43] |
Zhang M, Huang C, Guo Y F, et al. Numerical simulation and analysis of microstructure evolution of TC4 alloy weld pool [J]. Chin. J. Nonferr. Met., 2020, 30: 1876
|
[43] |
张 敏, 黄 超, 郭宇飞 等. TC4合金焊接熔池微观组织演变的数值模拟与分析 [J]. 中国有色金属学报, 2020, 30: 1876
|
[44] |
Mou G, Hua X M, Xu X B, et al. Comparative study on welding procedure and performance of 8 mm thick TC4 titanium alloy with TIG and MIG [J]. Electr. Weld. Mach., 2020, 50(4): 70
|
[44] |
牟 刚, 华学明, 徐小波 等. 8 mm厚TC4钛合金TIG、MIG焊接工艺及性能对比研究 [J]. 电焊机, 2020, 50(4): 70
|
[45] |
Du J H, Liu H B, Wang F, et al. Solidification microstructure reconstruction and its effects on phase transformation, grain boundary transformation mechanism, and mechanical properties of TC4 alloy welded joint [J]. Metall. Mater. Trans., 2024, 55A: 1193
|
[46] |
Akhonin S V, Yu Belous V, Selin R V, et al. Influence of TIG welding thermal cycle on temperature distribution and phase transformation in low-cost titanium alloy [J]. IOP Conf. Ser. Earth Environ. Sci., 2021, 688: 012012
|
[47] |
Kazempour-Liasi H, Tajally M, Abdollah-Pour H. A study on microstructure and phase transformation in the weld fusion zone of TIG-Welded IN939 with IN625 and IN718 as filler metal [J]. Metall. Mater. Trans., 2020, 51A: 2163
|
[48] |
Wu W, Gao H M, Cheng G F, et al. Grain growth in heat affected zone of fine grained titanium alloy [J]. Trans. China Weld. Inst., 2008, 29(10): 57
|
[48] |
吴 巍, 高洪明, 程广福 等. 细晶粒钛合金热影响区晶粒长大规律 [J]. 焊接学报, 2008, 29(10): 57
|
[49] |
Hou J J, Yu J, Dong J H. Study on microstructure and mechanical properties of TC4 titanium alloy welded joint by TIG welding [J]. Weld. Technol., 2011, 40(4): 15
|
[49] |
侯继军, 余 军, 董俊慧. TC4钛合金TIG焊接头组织及力学性能 [J]. 焊接技术, 2011, 40(4): 15
|
[50] |
Węglowski M S, Błacha S, Phillips A. Electron beam welding-techniques and trends-review [J]. Vacuum, 2016, 130: 72
|
[51] |
Yang S Y, Yang T, Cheng X W. Research status of electron beam welding of titanium alloy [J]. Met. Funct. Mater., 2019, 26(4): 1
|
[51] |
杨素媛, 杨 婷, 程兴旺. 电子束焊接钛合金的组织与力学行为研究现状 [J]. 金属功能材料, 2019, 26(4): 1
|
[52] |
Wen J Z, Bu W D, Li J P, et al. Study on microstructure and properties of thick TC4 alloy joints welded by electron beam [J]. Hot Work. Technol., 2016, 45(17): 66
|
[52] |
温锦志, 卜文德, 李建萍 等. 厚板TC4钛合金电子束焊接头组织和力学性能研究 [J]. 热加工工艺, 2016, 45(17): 66
|
[53] |
Wu H Q, Feng J C, He J S, et al. Effects of electron beam heat input mode on microstructure of Ti-6Al-4V [J]. Trans. China Weld. Inst., 2004, 25(5): 41
|
[53] |
吴会强, 冯吉才, 何景山 等. 电子束焊接热输入对Ti-6Al-4V组织结构的影响 [J]. 焊接学报, 2004, 25(5): 41
|
[54] |
Wu B, Li J W, Tang Z Y. Study on the electron beam welding process of ZTC4 titanium alloy [J]. Rare Met. Mater. Eng., 2014, 43: 786
|
[55] |
Zhang Q Y, Li J W, Lu Y H, et al. Welding shape and microstructure of TA15 titanium alloy welding joint welded by electron beam [J]. Phys. Test. Chem. Anal., 2012, 48(1): 11
|
[55] |
张庆云, 李晋炜, 陆业航 等. TA15钛合金电子束焊缝形貌及显微组织 [J]. 理化检验-物理分册, 2012, 48(1): 11
|
[56] |
Wang G Q, Chen Z Y, Li J W, et al. Microstructure and mechanical properties of electron beam welded titanium alloy Ti-6246 [J]. J. Mater. Sci. Technol., 2018, 34: 570
doi: 10.1016/j.jmst.2016.10.007
|
[57] |
Wang S G, Wu X Q. Investigation on the microstructure and mechanical properties of Ti-6Al-4V alloy joints with electron beam welding [J]. Mater. Design (1980-2015), 2012, 36: 663
|
[58] |
Zhang F Y, Deng J L, Jiang C P, et al. Study on microstructure and mechanical properties of electron beam welding and TIG welding of TC4 [J]. Hot Work. Technol., 2012, 41(7): 105
|
[58] |
张凤英, 邓娟丽, 姜超平 等. TC4钛合金电子束焊与TIG焊焊接接头的组织性能对比研究 [J]. 热加工工艺, 2012, 41(7): 105
|
[59] |
Cheng G F. Grain growth and microstructure tranformation in the heat affect zone of gas tungsten arc welding of fine grain TC4 alloy [D]. Harbin: Harbin Institute of Technology, 2008
|
[59] |
程广福. 细晶粒TC4钛合金TIG焊HAZ晶粒长大及组织转变规律 [D]. 哈尔滨: 哈尔滨工业大学, 2008
|
[60] |
Zhou S L, Tao J, Zhao H T, et al. Influence of grain size on microstructure and mechanical properties of Ti Alloy in TIG [J]. J. Aeronaut. Mater., 2011, 31(5): 34
|
[60] |
周水亮, 陶 军, 赵海涛 等. 晶粒尺寸对钛合金TIG焊接接头组织及力学性能的影响 [J]. 航空材料学报, 2011, 31(5): 34
|
[61] |
He Z B. Research on the Structure and properties of welding joint for alloy Al-Mg-(Sc, Zr) [J]. Light Alloy Fabricat. Technol., 2006, 34(8): 44
|
[61] |
何振波. Al-Mg(Sc, Zr)合金焊接接头组织与性能试验研究 [J]. 轻合金加工技术, 2006, 34(8): 44
|
[62] |
Lu W W, Chen Y H, Huang Y D, et al. Microstructure and mechanical property analysis about NiTiNb laser welding joint around heat treatment [J]. Chin. J. Lasers, 2014, 41: 1003001
|
[62] |
陆巍巍, 陈玉华, 黄永德 等. NiTiNb激光焊接接头退火前后的显微组织和力学性能分析 [J]. 中国激光, 2014, 41: 1003001
|
[63] |
Yang S T. A brief discussion on the formation mechanism of Widmanstätten structure and its impact on material properties [J]. J. Henan Sci. Technol., 2014, (4): 76
|
[63] |
杨胜涛. 浅谈魏氏组织形成机理及对材料性能影响 [J]. 河南科技, 2014, (4): 76
|
[64] |
Bhattacharyya D, Viswanathan G B, Denkenberger R, et al. The role of crystallographic and geometrical relationships between α and β phases in an α/β titanium alloy [J]. Acta Mater., 2003, 51: 4679
|
[65] |
Cheng S P, Su J H, Chen X W, et al. Effect of forging technology on microstructure and properties of TA10 titanium alloy [J]. J. Henan Univ. Sci. Technol. (Nat. Sci.), 2017, 38(3): 6
|
[65] |
程帅朋, 苏娟华, 陈学文 等. 锻造工艺对TA10钛合金组织性能的影响 [J]. 河南科技大学学报(自然科学版), 2017, 38(3): 6
|
[66] |
Hansen N. Hall-Petch relation and boundary strengthening [J]. Scrip. Mater., 2004, 51: 801
|
[67] |
Yang J, Huang S S, Yin H, et al. Inhomogeneity analyses of microstructure and mechanical properties of TC21 titanium alloy variable cross-section die forgings for aviation [J]. Acta Metall. Sin., 2024, 60: 333
doi: 10.11900/0412.1961.2022.00313
|
[67] |
杨 杰, 黄森森, 尹 慧 等. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析 [J]. 金属学报, 2024, 60: 333
|
[68] |
Weiss L, Zollinger J, Sallamand P, et al. Mechanical properties and microstructural study of homogeneous and heterogeneous laser welds in α, β, and α + β titanium alloys [J]. Weld. World, 2019, 63: 53
|
[69] |
Guo W, Jia Q, Li R T, et al. The superplastic deformation behavior and phase evolution of Ti-6Al-4V alloy at constant tensile velocity [J]. High Temp. Mater. Processes, 2017, 36: 351
|
[70] |
Abbasi K, Beidokhti B, Sajjadi S A. Microstructure and mechanical properties of Ti-6Al-4V welds using α, near-α and α + β filler alloys [J]. Mater. Sci. Eng., 2017, 702A: 272
|
[71] |
Haden C V, Collins P C, Harlow D G. Yield strength prediction of titanium alloys [J]. JOM, 2015, 67: 1357
|
[72] |
Akman E, Demir A, Canel T, et al. Laser welding of Ti6Al4V titanium alloys [J]. J. Mater. Process. Technol., 2009, 209: 3705
|
[73] |
Liu J G, Zheng J Y, Fu B, et al. Thermo-mechanical study of TIG welding of Ti-6Al-4V for residual stresses considering solid state phase transformation [J]. Metals, 2023, 13: 1001
|
[74] |
Yoon S, Ueji R, Fujii H. Microstructure and texture distribution of Ti-6Al-4V alloy joints friction stir welded below β-transus temperature [J]. J. Mater. Process. Technol., 2016, 229: 390
|
[75] |
Zhou W, Chew K G. Effect of welding on impact toughness of butt-joints in a titanium alloy [J]. Mater. Sci. Eng., 2003, 347A: 180
|
[76] |
Yang X G, Li S L, Qi H Y. Ti-6Al-4V welded joints via electron beam welding: microstructure, fatigue properties, and fracture behavior [J]. Mater. Sci. Eng., 2014, 597A: 225
|
[77] |
Cui S W, Shi Y H, Zhu T, et al. Microstructure, texture, and mechanical properties of Ti-6Al-4V joints by K-TIG welding [J]. J. Manuf. Processes, 2019, 37: 418
|
[78] |
Ali I, Suhail M, Alothman Z A, et al. Recent advances in syntheses, properties and applications of TiO2 nanostructures [J]. RSC Adv., 2018, 8: 30125
|
[79] |
Gao F Y, Gao Q, Jiang P, et al. Microstructure and mechanical properties of Ti6321 alloy welded joint by EBW [J]. Int. J. Lightw. Mater. Manuf., 2018, 1: 265
|
[80] |
Diao Y H, Zhang K M. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders [J]. Appl. Surf. Sci., 2015, 352: 163
|
[81] |
Kain V. Stress corrosion cracking (SCC) in stainless steels [A]. Stress Corrosion Cracking [C]. Woodhead Publishing, 2011: 199
|
[82] |
Li W J, Zhang H X, Zhang H Q, et al. Effect of temperature on stress corrosion behavior of Ti-alloy Ti80 in sea water [J]. J. Chin. Soc. Corros. Prot., 2022, 43: 111
|
[82] |
李文桔, 张慧霞, 张宏泉 等. 温度对钛合金应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 43: 111
|
[83] |
Guo Z, Li H, Cui Z Y, et al. Comparative study on stress corrosion behavior of A100 ultrahigh-strength steel beneath dynamic thin electrolyte layer and in artificial seawater environments [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1303
|
[83] |
郭 昭, 李 晗, 崔中雨 等. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1303
|
[84] |
Zhu R L, Zhang Z M, Wang J Q, et al. Review on SCC crack growth behavior of dissimilar metal welds for nuclear power reactors [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 189
|
[84] |
朱若林, 张志明, 王俭秋 等. 核电异种金属焊接接头的应力腐蚀裂纹扩展行为研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 189
|
[85] |
Fang W P, Xiao T, Zhang Y P, et al. Stress corrosion crack sensitivity of ultra-thick TC4 titanium alloy electron beam welding joints [J]. Trans. China Weld. Inst., 2019, 40(12): 121
|
[85] |
房卫萍, 肖 铁, 张宇鹏 等. 超厚板TC4钛合金电子束焊接接头应力腐蚀敏感性 [J]. 焊接学报, 2019, 40(12): 121
doi: 10.12073/j.hjxb.2019400324
|
[86] |
Zhang H X, Zhang F, Hao F Y, et al. Stress corrosion behavior and mechanism of Ti6321 alloy with different microstructures in stimulated deep-sea environment [J]. Corros. Sci., 2024, 233: 112059
|
[87] |
Gao F Y, Sun Z J, Yang S L, et al. Stress corrosion characteristics of electron beam welded titanium alloys joints in NaCl solution [J]. Mater. Charact., 2022, 192: 112126
|
[88] |
Thomas D J. Analyzing the failure of welded steel components in construction systems [J]. J. Fail. Anal. Prev., 2018, 18: 304
|
[89] |
Zhang W Y, Jiang W C, Zhao X, et al. Fatigue life of a dissimilar welded joint considering the weld residual stress: experimental and finite element simulation [J]. Int. J. Fatigue, 2018, 109: 182
|
[90] |
Song K J, Wei Y H, Dong Z B, et al. Numerical simulation of β to α phase transformation in heat affected zone during welding of TA15 alloy [J]. Comp. Mater. Sci., 2013, 72: 93
|
[91] |
Li X Z, Hu S B, Xiao J Z, et al. Effect of microstructure heterogeneity on fatigue crack growth of TA15 electron beam welded joint [J]. Chin. J. Nonferr. Met., 2010, 20: 2313
|
[91] |
李行志, 胡树兵, 肖建中 等. 组织不均匀性对TA15电子束焊接接头疲劳裂纹扩展的影响 [J]. 中国有色金属学报, 2010, 20: 2313
|
[92] |
Liu X Y. Study on mechanical properties and fatigue fracture behavior of TC4 titanium alloy structural parts [D]. Baotou: Inner Mongolia University of Science & Technology, 2023
|
[92] |
刘馨宇. TC4钛合金结构件力学性能及疲劳断裂行为研究 [D]. 包头: 内蒙古科技大学, 2023
|
[93] |
Morita T, Shinada K, Kawakami K, et al. Influence of short-time duplex heat treatment on fatigue strength of Ti-6Al-4Valloy [J]. J. Soc. Mater. Sci. Jpn, 2007, 56: 345
|
[93] |
森田辰郎, 信田康介, 川嵜一博 等. Ti-6Al-4V合金の疲労強度に及ぼす短時間2段階熱処理の影響 [J]. 材料, 2007, 56: 345
|
[94] |
Ren L N, Zhang Q B, Lei X W, et al. Effect of laser heat input on microstructure and fatigue behavior of TC17 titanium alloy laser welded joint [J]. Rare Met. Mater. Eng., 2024, 53: 1836
|
[94] |
任利娜, 张群兵, 雷晓维 等. 激光线能量对TC17钛合金焊接接头组织和疲劳性能的影响(英文) [J]. 稀有金属材料与工程, 2024, 53: 1836
|
[95] |
Li T L. Investigation of fatigue cracking behavior of TC18 titanium alloy [D]. Shenyang: Northeastern University, 2013
|
[95] |
李天龙. TC18钛合金疲劳开裂损伤行为的研究 [D]. 沈阳: 东北大学, 2013
|
[96] |
Ji P. Study on the microstructure and properties of Al-Mg-Mn-Zr-Er alloy friction stir welding joints [D]. Harbin: Harbin Engineering University, 2019
|
[96] |
吉 朋. Al-Mg-Mn-Zr-Er合金搅拌摩擦焊接头组织与性能的研究 [D]. 哈尔滨: 哈尔滨工程大学, 2019
|
[97] |
Wang P. Atomistic simulation of fracture and coupled grain boundary motion in nanocrystals [D]. Wuhan: Huazhong University of Science and Technology, 2017
|
[97] |
王 鹏. 纳米晶材料断裂和耦合晶界运动的分子动力学模拟 [D]. 武汉: 华中科技大学, 2017
|
[98] |
Zhang M, Zhang J, McDowell D L. Microstructure-based crystal plasticity modeling of cyclic deformation of Ti-6Al-4V [J]. Int. J. Plast., 2007, 23: 1328
|
[99] |
Wang D L. Microstructure and properties of TC4 titanium alloy/316L stainless steel MIG welded joint [D]. Dalian: Dalian University of Technology, 2023
|
[99] |
王大力. TC4钛合金/316L不锈钢MIG焊接头微观组织及性能研究 [D]. 大连: 大连理工大学, 2023
|
[100] |
Babu B, Lindgren L E. Dislocation density based model for plastic deformation and globularization of Ti-6Al-4V [J]. Int. J. Plast., 2013, 50: 94
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|