|
|
|
| Sb对高强结构钢在东海环境中腐蚀行为的影响 |
冯宇芹1, 郭同翰1, 余韦汉1, 吴伟1,2( ), 张大全1,2 |
1 上海电力大学环境与化学工程学院 上海市电力材料防护与新材料重点实验室 上海 201306 2 上海电力大学 上海热交换系统节能工程技术研究中心 上海 200090 |
|
| Influence of Sb on Corrosion Behavior of High-strength Structural Steels Exposed to Atmosphere at East Coast Region |
FENG Yuqin1, GUO Tonghan1, YU Weihan1, WU Wei1,2( ), ZHANG Daquan1,2 |
1 Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 201306, China 2 Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China |
引用本文:
冯宇芹, 郭同翰, 余韦汉, 吴伟, 张大全. Sb对高强结构钢在东海环境中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1300-1308.
Yuqin FENG,
Tonghan GUO,
Weihan YU,
Wei WU,
Daquan ZHANG.
Influence of Sb on Corrosion Behavior of High-strength Structural Steels Exposed to Atmosphere at East Coast Region[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1300-1308.
| [1] |
Liu W B, Wang W J, Wang S Q, et al. Experiment research on microstructure and mechanical properties of high strength low alloy structural steels [J]. Petro-Chem. Equip., 2022, 51: 6
|
| [1] |
刘五兵, 王文君, 王世清 等. 高强度低合金结构钢组织性能试验研究 [J]. 石油化工设备, 2022, 51: 6
|
| [2] |
Han Z X, Li C, Liu G Q, et al. Study on welding technology of Q690D low alloy high strength structural steel [J]. Weld. Technol., 2019, 48: 54
|
| [2] |
韩振仙, 李 超, 柳国强 等. Q690D低合金高强结构钢焊接工艺研究 [J]. 焊接技术, 2019, 48: 54
|
| [3] |
Branco R, Berto F. High-strength low-alloy steels [J]. Metals, 2021, 11: 1000
|
| [4] |
Wang J Y, Zhou X J, Wang H L, et al. Initial corrosion behavior of carbon steel and high strength steel in South China Sea atmosphere [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 237
|
| [4] |
王靖羽, 周学杰, 王洪伦 等. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 237
|
| [5] |
Li Z Y, Wang G, Luo S W, et al. Early corrosion behavior of EH36 ship plate steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 463
|
| [5] |
李子运, 王 贵, 罗思维 等. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 463
doi: 10.11902/1005.4537.2019.203
|
| [6] |
Ma H, Tian H Y, Liu Y Q, et al. Corrosion behavior of S420 steel in different marine zones [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 635
|
| [6] |
麻 衡, 田会云, 刘宇茜 等. S420海工钢在不同海洋区带环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 635
|
| [7] |
Yu J X, Wang H K, Yu Y, et al. Corrosion behavior of X65 pipeline steel: comparison of wet-dry cycle and full immersion [J]. Corros. Sci., 2018, 133: 276
|
| [8] |
Liang M X, Melchers R, Chaves I. Corrosion and pitting of 6060 series aluminium after 2 years exposure in seawater splash, tidal and immersion zones [J]. Corros. Sci., 2018, 140: 286
|
| [9] |
Melchers R E. Effect on marine immersion corrosion of carbon content of low alloy steels [J]. Corros. Sci., 2003, 45: 2609
|
| [10] |
Wu W. Stress corrosion cracking mechanism of Nb/Sb-microalloyed high strength steels in polluted marine atmosphere [D]. Beijing: University of Science and Technology Beijing, 2020
|
| [10] |
吴 伟. 铌和锑微合金化高强钢在污染海洋大气中的应力腐蚀机理研究 [D]. 北京: 北京科技大学, 2020
|
| [11] |
Chang X T, Song J Q, Wang B, et al. Effect of micro-alloying with Cr, N and Al on corrosion resistance of high manganese austenitic steel in acidic salt spray environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 47
|
| [11] |
常雪婷, 宋嘉琪, 王 冰 等. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究 [J]. 中国腐蚀与防护学报, 2024, 44: 47
|
| [12] |
Yin J, Gao Y H, Yi F. Effect of Ag micro-alloying on microstructure and corrosion behavior of Mg-Zn-Ca alloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44(5): 1274
|
| [12] |
尹 洁, 高永浩, 易 芳. Ag微合金化对Mg-Zn-Ca合金微观组织及腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 44(5): 1274
|
| [13] |
Sun L Y, Liu X, Xu X, et al. Review on niobium application in microalloyed steel [J]. J. Iron Steel Res. Int., 2022, 29: 1513
|
| [14] |
Fazeli F, Amirkhiz B S, Scott C, et al. Kinetics and microstructural change of low-carbon bainite due to vanadium microalloying [J]. Mater. Sci. Eng., 2018, 720A: 248
|
| [15] |
Msallamova S, Fojt J, Novak P, et al. Effects of Cu microalloying on corrosion behavior of spring steel 54SiCr6 [J]. Mater. Chem. Phys., 2023, 309: 128323
|
| [16] |
Zhang T Y, Liu W, Dong B J, et al. Corrosion of Cu-doped Ni-Mo low-alloy steel in a severe marine environment [J]. J. Phys. Chem. Solids, 2022, 163: 110584
|
| [17] |
Hao L, Zhang S X, Dong J H, et al. A study of the evolution of rust on Mo-Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion [J]. Corros. Sci., 2012, 54: 244
|
| [18] |
Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
|
| [19] |
Yang X J, Yang Y, Sun M H, et al. A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology [J]. J. Mater. Sci. Technol., 2022, 104: 67
doi: 10.1016/j.jmst.2021.05.086
|
| [20] |
Gao J Z, Wang N X, Chen H, et al. The Influence of 1wt.%Cr on the corrosion resistance of low-alloy steel in marine environments [J]. Metals, 2023, 13: 1050
|
| [21] |
Zuo M F, Chen Y L, Mi Z L, et al. Effects of Cr content on corrosion behaviour and corrosion products of spring steels [J]. J. Iron Steel Res. Int., 2019, 26: 1000
|
| [22] |
Wang Y, Liu Z L, Liu X Q, et al. Microstructure and corrosion resistance of hot rolled Cr/Ni micro-alloying high strength weathering steel [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 39
|
| [22] |
王 越, 刘子利, 刘希琴 等. 热轧态Cr、Ni微合金化高强度耐候钢组织与耐蚀性能 [J]. 中国腐蚀与防护学报, 2018, 38: 39
|
| [23] |
Wang L J, Wei Y H, Ma J J, et al. Optimizing the resistance of Cr-advanced steel to CO2 corrosion with the addition of Ni [J]. J. Mater. Res. Technol., 2024, 32: 97
|
| [24] |
Zhang X, Zhou J H, Liu C, et al. Effects of Ni addition on mechanical properties and corrosion behaviors of coarse-grained WC-10(Co, Ni) cemented carbides [J]. Int. J. Refract. Met. Hard Mater., 2019, 80: 123
|
| [25] |
Li D L, Fu G Q, Zhu M Y, et al. Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere [J]. Int. J. Miner. Metall. Mater., 2018, 25: 325
|
| [26] |
Yang Y, Yang X J, Jia J H, et al. Effect of Sb and Sn on the corrosion behavior of low alloy steel in simulated polluted marine atmosphere [J]. Surf. Technol., 2021, 50: 224
|
| [26] |
杨 颖, 杨小佳, 贾静焕 等. Sb和Sn微合金化对低合金钢在模拟污染海洋大气中腐蚀行为的影响 [J]. 表面技术, 2021, 50: 224
|
| [27] |
Wu W, Liu N Y, Chai P L, et al. Roles of Sb addition on the corrosion resistance of the low‐alloy steel in a real tropical marine atmosphere [J]. Mater. Corros., 2022, 73: 733
|
| [28] |
Yang Y, Cheng X Q, Zhao J B, et al. A study of rust layer of low alloy structural steel containing 0.1%Sb in atmospheric environment of the Yellow Sea in China [J]. Corros. Sci., 2021, 188: 109549
|
| [29] |
Wu W, Zhu L L, Chai P L, et al. Atmospheric corrosion behavior of Nb- and Sb-added weathering steels exposed to the South China Sea [J]. Int. J. Miner. Metall. Mater., 2022, 29: 2041
|
| [30] |
Arafin M A, Szpunar J A. Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking [J]. Mater. Sci. Eng., 2011, 528A: 4927
|
| [31] |
Kumnorkaew T, Lian J, Uthaisangsuk V, et al. Effect of ausforming on microstructure and hardness characteristics of bainitic steel [J]. J. Mater. Res. Technol., 2020, 9: 13365
doi: 10.1016/j.jmrt.2020.09.016
|
| [32] |
Tian H Y, Wang X, Cui Z Y, et al. Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater [J]. Corros. Sci., 2018, 144: 145
|
| [33] |
Wang Z H, Huang Y H, Li J, et al. Effect of Nb on corrosion behavior of simulated weld HAZs of X80 pipeline steel in simulated seawater environments corresponding to shallow sea and deep sea [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 604
|
| [33] |
王子豪, 黄运华, 李 佳 等. Nb对X80钢焊接热影响区在模拟海水中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 604
doi: 10.11902/1005.4537.2016.177
|
| [34] |
Jiang J B, Li N N, Li Q L, et al. Effect of Ca and Sb on the corrosion resistance of E690 steel in marine atmosphere environment [J]. Metals, 2023, 13: 826
|
| [35] |
Wu W, Sun M H, Hong Y, et al. Field corrosion study of 690MPa grade Sb-containing high strength bridge steel in tropical oceanic environment [J]. Mater. Today Commun., 2023, 35: 105945
|
| [36] |
Zhang T Y, Li Y L, Li X, et al. Integral effects of Ca and Sb on the corrosion resistance for the high strength low alloy steel in the tropical marine environment [J]. Corros. Sci., 2022, 208: 110708
|
| [37] |
Zhang W H, Yang S W, Geng W T, et al. Corrosion behavior of the low alloy weathering steels coupled with stainless steel in simulated open atmosphere [J]. Mater. Chem. Phys., 2022, 288: 126409
|
| [38] |
Morcillo M, Díaz I, Chico B, et al. Weathering steels: From empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
|
| [39] |
Tian H Y, Cui Z Y, Ma H, et al. Corrosion evolution and stress corrosion cracking behavior of a low carbon bainite steel in the marine environments: Effect of the marine zones [J]. Corros. Sci., 2022, 206: 110490
|
| [40] |
Wu W, Wang Q Y, Yang L, et al. Corrosion and SCC initiation behavior of low-alloy high-strength steels microalloyed with Nb and Sb in a simulated polluted marine atmosphere [J]. J. Mater. Res. Technol., 2020, 9: 12976
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|