Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1300-1308     CSTR: 32134.14.1005.4537.2024.346      DOI: 10.11902/1005.4537.2024.346
  研究报告 本期目录 | 过刊浏览 |
Sb对高强结构钢在东海环境中腐蚀行为的影响
冯宇芹1, 郭同翰1, 余韦汉1, 吴伟1,2(), 张大全1,2
1 上海电力大学环境与化学工程学院 上海市电力材料防护与新材料重点实验室 上海 201306
2 上海电力大学 上海热交换系统节能工程技术研究中心 上海 200090
Influence of Sb on Corrosion Behavior of High-strength Structural Steels Exposed to Atmosphere at East Coast Region
FENG Yuqin1, GUO Tonghan1, YU Weihan1, WU Wei1,2(), ZHANG Daquan1,2
1 Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 201306, China
2 Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
引用本文:

冯宇芹, 郭同翰, 余韦汉, 吴伟, 张大全. Sb对高强结构钢在东海环境中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1300-1308.
Yuqin FENG, Tonghan GUO, Weihan YU, Wei WU, Daquan ZHANG. Influence of Sb on Corrosion Behavior of High-strength Structural Steels Exposed to Atmosphere at East Coast Region[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1300-1308.

全文: PDF(21641 KB)   HTML
摘要: 

高强结构钢在海洋环境中面临着严重的腐蚀问题,微合金化是提高高强结构钢耐蚀性的主要手段,但微量合金元素Sb的作用尚需进一步研究,因此本文通过现场暴露试验、电化学测试和各种表征手段对比研究了东海大气环境中含Sb和不含Sb高强结构钢的腐蚀行为差异,阐明了Sb的添加对高强结构钢耐蚀性的影响。研究表明,添加Sb能够优化钢的组织结构,使晶粒得到细化。同时,添加Sb能够减缓钢的腐蚀速率,降低腐蚀电流密度。在含Sb钢上形成的腐蚀产物层比在无Sb钢上的产物具有更致密的结构和保护性更好的物相组成,能够有效地抵抗侵蚀性Cl-进入基体。此外,含Sb钢表面的腐蚀坑在直径方向上变大,在深度方向上变浅,且这一变化速度比无Sb钢更加明显,统计结果证实添加Sb能够促进腐蚀模式朝着均匀腐蚀发展。

关键词 大气腐蚀腐蚀产物膜高强结构钢东海环境耐蚀性    
Abstract

High-strength structural steel faces corrosion problems in the marine environment, so it needs to be microalloyed with specific elements to improve its corrosion resistance, but the role of trace alloying elements needs to be further investigated, so in this paper, the differences in the corrosion behavior of Sb-containing and Sb-free high-strength structural steel in the atmospheric environment at the east coast region near Donghai bridge, Lingang new distric, Shanghai are comparatively investigated through field exposure tests, electrochemical tests, and various characterization means to elucidate the effect of the addition of Sb on the corrosion resistance of high-strength structural steel. The research has found that the addition of Sb can optimize the microstructure of the steel with refined grains. At the same time, the addition of Sb can slow down the corrosion rate of steel and reduce the corrosion current density. The corrosion product layers formed on Sb-containing steels have better compactness and protectiveness rather than those on Sb-free steels, which can effectively resist the access of aggressive Cl ions into the matrix. In addition, with the progress of corrosion process, the corrosion pits on the surface of Sb-containing steels become larger in diameter and shallower in depth, and the rate of this change is more obvious than that of Sb-free steels, and this statistical result confirms that the addition of Sb can promote the corrosion pattern toward uniform corrosion.

Key wordsatmospheric corrosion    corrosion product film    high-strength structural steel    Sb    east sea environment    corrosion resistance
收稿日期: 2024-10-18      32134.14.1005.4537.2024.346
ZTFLH:  TG172  
基金资助:国家自然科学基金(52101068)
通讯作者: 吴伟,E-mail:wuweicorr@shiep.edu.cn,研究方向为能源电力材料腐蚀与防护
Corresponding author: WU Wei, E-mail: wuweicorr@shiep.edu.cn
作者简介: 冯宇芹,女,2000年生,硕士生
MaterialCSiMnPSCrCuNiSbFe
Sb-free0.0580.271.560.0070.0030.450.320.82-Bal.
Sb-added0.0530.251.580.0100.0020.440.350.840.012Bal.
表1  实验钢的化学成分 (mass fraction / %)
图1  无Sb钢和含Sb钢的显微组织结构
图2  含Sb钢和无Sb钢的动电位极化曲线
图3  暴露试验后样品表面腐蚀产物形貌和成分
图4  腐蚀产物层的截面形貌和元素分布
图5  含Sb钢横截面局部腐蚀产物层EPMA分析
图6  两种钢大气暴露后表面腐蚀产物的XRD分析及α/γ*比例
图7  含Sb钢腐蚀产物中Sb元素的XPS谱
图8  去除腐蚀产物后2种钢样品表面形貌
图9  去除腐蚀产物后2种钢样品的表面三维轮廓和最大凹坑深度
图10  2种钢样品表面腐蚀坑的统计分析
[1] Liu W B, Wang W J, Wang S Q, et al. Experiment research on microstructure and mechanical properties of high strength low alloy structural steels [J]. Petro-Chem. Equip., 2022, 51: 6
[1] 刘五兵, 王文君, 王世清 等. 高强度低合金结构钢组织性能试验研究 [J]. 石油化工设备, 2022, 51: 6
[2] Han Z X, Li C, Liu G Q, et al. Study on welding technology of Q690D low alloy high strength structural steel [J]. Weld. Technol., 2019, 48: 54
[2] 韩振仙, 李 超, 柳国强 等. Q690D低合金高强结构钢焊接工艺研究 [J]. 焊接技术, 2019, 48: 54
[3] Branco R, Berto F. High-strength low-alloy steels [J]. Metals, 2021, 11: 1000
[4] Wang J Y, Zhou X J, Wang H L, et al. Initial corrosion behavior of carbon steel and high strength steel in South China Sea atmosphere [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 237
[4] 王靖羽, 周学杰, 王洪伦 等. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 237
[5] Li Z Y, Wang G, Luo S W, et al. Early corrosion behavior of EH36 ship plate steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 463
[5] 李子运, 王 贵, 罗思维 等. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 463
doi: 10.11902/1005.4537.2019.203
[6] Ma H, Tian H Y, Liu Y Q, et al. Corrosion behavior of S420 steel in different marine zones [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 635
[6] 麻 衡, 田会云, 刘宇茜 等. S420海工钢在不同海洋区带环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 635
[7] Yu J X, Wang H K, Yu Y, et al. Corrosion behavior of X65 pipeline steel: comparison of wet-dry cycle and full immersion [J]. Corros. Sci., 2018, 133: 276
[8] Liang M X, Melchers R, Chaves I. Corrosion and pitting of 6060 series aluminium after 2 years exposure in seawater splash, tidal and immersion zones [J]. Corros. Sci., 2018, 140: 286
[9] Melchers R E. Effect on marine immersion corrosion of carbon content of low alloy steels [J]. Corros. Sci., 2003, 45: 2609
[10] Wu W. Stress corrosion cracking mechanism of Nb/Sb-microalloyed high strength steels in polluted marine atmosphere [D]. Beijing: University of Science and Technology Beijing, 2020
[10] 吴 伟. 铌和锑微合金化高强钢在污染海洋大气中的应力腐蚀机理研究 [D]. 北京: 北京科技大学, 2020
[11] Chang X T, Song J Q, Wang B, et al. Effect of micro-alloying with Cr, N and Al on corrosion resistance of high manganese austenitic steel in acidic salt spray environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 47
[11] 常雪婷, 宋嘉琪, 王 冰 等. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究 [J]. 中国腐蚀与防护学报, 2024, 44: 47
[12] Yin J, Gao Y H, Yi F. Effect of Ag micro-alloying on microstructure and corrosion behavior of Mg-Zn-Ca alloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44(5): 1274
[12] 尹 洁, 高永浩, 易 芳. Ag微合金化对Mg-Zn-Ca合金微观组织及腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 44(5): 1274
[13] Sun L Y, Liu X, Xu X, et al. Review on niobium application in microalloyed steel [J]. J. Iron Steel Res. Int., 2022, 29: 1513
[14] Fazeli F, Amirkhiz B S, Scott C, et al. Kinetics and microstructural change of low-carbon bainite due to vanadium microalloying [J]. Mater. Sci. Eng., 2018, 720A: 248
[15] Msallamova S, Fojt J, Novak P, et al. Effects of Cu microalloying on corrosion behavior of spring steel 54SiCr6 [J]. Mater. Chem. Phys., 2023, 309: 128323
[16] Zhang T Y, Liu W, Dong B J, et al. Corrosion of Cu-doped Ni-Mo low-alloy steel in a severe marine environment [J]. J. Phys. Chem. Solids, 2022, 163: 110584
[17] Hao L, Zhang S X, Dong J H, et al. A study of the evolution of rust on Mo-Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion [J]. Corros. Sci., 2012, 54: 244
[18] Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
[19] Yang X J, Yang Y, Sun M H, et al. A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology [J]. J. Mater. Sci. Technol., 2022, 104: 67
doi: 10.1016/j.jmst.2021.05.086
[20] Gao J Z, Wang N X, Chen H, et al. The Influence of 1wt.%Cr on the corrosion resistance of low-alloy steel in marine environments [J]. Metals, 2023, 13: 1050
[21] Zuo M F, Chen Y L, Mi Z L, et al. Effects of Cr content on corrosion behaviour and corrosion products of spring steels [J]. J. Iron Steel Res. Int., 2019, 26: 1000
[22] Wang Y, Liu Z L, Liu X Q, et al. Microstructure and corrosion resistance of hot rolled Cr/Ni micro-alloying high strength weathering steel [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 39
[22] 王 越, 刘子利, 刘希琴 等. 热轧态Cr、Ni微合金化高强度耐候钢组织与耐蚀性能 [J]. 中国腐蚀与防护学报, 2018, 38: 39
[23] Wang L J, Wei Y H, Ma J J, et al. Optimizing the resistance of Cr-advanced steel to CO2 corrosion with the addition of Ni [J]. J. Mater. Res. Technol., 2024, 32: 97
[24] Zhang X, Zhou J H, Liu C, et al. Effects of Ni addition on mechanical properties and corrosion behaviors of coarse-grained WC-10(Co, Ni) cemented carbides [J]. Int. J. Refract. Met. Hard Mater., 2019, 80: 123
[25] Li D L, Fu G Q, Zhu M Y, et al. Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere [J]. Int. J. Miner. Metall. Mater., 2018, 25: 325
[26] Yang Y, Yang X J, Jia J H, et al. Effect of Sb and Sn on the corrosion behavior of low alloy steel in simulated polluted marine atmosphere [J]. Surf. Technol., 2021, 50: 224
[26] 杨 颖, 杨小佳, 贾静焕 等. Sb和Sn微合金化对低合金钢在模拟污染海洋大气中腐蚀行为的影响 [J]. 表面技术, 2021, 50: 224
[27] Wu W, Liu N Y, Chai P L, et al. Roles of Sb addition on the corrosion resistance of the low‐alloy steel in a real tropical marine atmosphere [J]. Mater. Corros., 2022, 73: 733
[28] Yang Y, Cheng X Q, Zhao J B, et al. A study of rust layer of low alloy structural steel containing 0.1%Sb in atmospheric environment of the Yellow Sea in China [J]. Corros. Sci., 2021, 188: 109549
[29] Wu W, Zhu L L, Chai P L, et al. Atmospheric corrosion behavior of Nb- and Sb-added weathering steels exposed to the South China Sea [J]. Int. J. Miner. Metall. Mater., 2022, 29: 2041
[30] Arafin M A, Szpunar J A. Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking [J]. Mater. Sci. Eng., 2011, 528A: 4927
[31] Kumnorkaew T, Lian J, Uthaisangsuk V, et al. Effect of ausforming on microstructure and hardness characteristics of bainitic steel [J]. J. Mater. Res. Technol., 2020, 9: 13365
doi: 10.1016/j.jmrt.2020.09.016
[32] Tian H Y, Wang X, Cui Z Y, et al. Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater [J]. Corros. Sci., 2018, 144: 145
[33] Wang Z H, Huang Y H, Li J, et al. Effect of Nb on corrosion behavior of simulated weld HAZs of X80 pipeline steel in simulated seawater environments corresponding to shallow sea and deep sea [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 604
[33] 王子豪, 黄运华, 李 佳 等. Nb对X80钢焊接热影响区在模拟海水中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 604
doi: 10.11902/1005.4537.2016.177
[34] Jiang J B, Li N N, Li Q L, et al. Effect of Ca and Sb on the corrosion resistance of E690 steel in marine atmosphere environment [J]. Metals, 2023, 13: 826
[35] Wu W, Sun M H, Hong Y, et al. Field corrosion study of 690MPa grade Sb-containing high strength bridge steel in tropical oceanic environment [J]. Mater. Today Commun., 2023, 35: 105945
[36] Zhang T Y, Li Y L, Li X, et al. Integral effects of Ca and Sb on the corrosion resistance for the high strength low alloy steel in the tropical marine environment [J]. Corros. Sci., 2022, 208: 110708
[37] Zhang W H, Yang S W, Geng W T, et al. Corrosion behavior of the low alloy weathering steels coupled with stainless steel in simulated open atmosphere [J]. Mater. Chem. Phys., 2022, 288: 126409
[38] Morcillo M, Díaz I, Chico B, et al. Weathering steels: From empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
[39] Tian H Y, Cui Z Y, Ma H, et al. Corrosion evolution and stress corrosion cracking behavior of a low carbon bainite steel in the marine environments: Effect of the marine zones [J]. Corros. Sci., 2022, 206: 110490
[40] Wu W, Wang Q Y, Yang L, et al. Corrosion and SCC initiation behavior of low-alloy high-strength steels microalloyed with Nb and Sb in a simulated polluted marine atmosphere [J]. J. Mater. Res. Technol., 2020, 9: 12976
[1] 郭耀威, 艾士民, 房大然, 林小娉, 杨连威, 郑哲皓. 高压凝固Mg-xAl (x = 3, 5, 7, 9, 12)合金组织结构及耐腐蚀性能[J]. 中国腐蚀与防护学报, 2025, 45(5): 1265-1276.
[2] 张雄斌, 党恩, 于晓婧, 汤玉斐, 赵康. 油气田用马氏体不锈钢腐蚀性能研究现状与进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[3] 周谦永, 赖漾, 李谦. 酸洗工艺对不同锡量二次冷轧镀锡板耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
[4] 李秋博, 苏一喆, 吴伟, 张俊喜. 自源性磁场对Cu大气腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 956-964.
[5] 陈宇强, 冉光林, 陆丁丁, 黄磊, 曾立英, 刘阳, 支倩. 循环强化对7075铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.
[6] 彭文山, 辛永磊, 温杰平, 侯健, 孙明先. 极地冰覆盖下变温和恒温对高强钢腐蚀影响研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 821-826.
[7] 陆添爱, 蒋文昊, 吴伟, 张俊喜. 基于接地材料功能需求的耐蚀铸铁表面改性研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[8] 魏珂正, 蒋文龙, 龚奕维, 裘欣, 丁汉林, 项重辰, 王子健. 时效时间对锻态AZ80镁合金第二相析出及柱面取向表面腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.
[9] 马晋遥, 董楠, 郭振森, 韩培德. B、Ce微合金化对S31254超级奥氏体不锈钢析出相及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[10] 程永贺, 付俊伟, 赵茂密, 沈云军. 高熵合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[11] 张佳伟, 黄峰, 汪涵敏, 郎丰军, 袁玮, 刘静. 耐候钢热轧氧化皮对快速稳定化锈层演变规律及耐蚀性影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 891-900.
[12] 张吉昊, 徐亚程, 贾学远, 高荣杰. B10铜合金超双疏表面的制备及其性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 909-917.
[13] 何佳璇, 张羽彤, 管旭东, 唐建华, 黄海, 赵旭辉, 唐聿明, 左禹. 铝合金微通道换热器的腐蚀防护现状与进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[14] 樊志彬, 高智悦, 宗立君, 吴亚平, 李辛庚, 姜波, 杜宝帅. 1050A铝合金在山东不同典型环境中的大气腐蚀行为特征研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1055-1063.
[15] 田梦真, 王勇, 李涛, 汪川, 郭泉忠, 郭建喜. 电参数对AZ31B镁合金微弧氧化膜能耗及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.