|
|
超临界水环境中汽轮机阀门材料氧化特性研究 |
王芬玲1, 尚丽梅1, 张乃强2, 朱忠亮2( ) |
1 东方电气集团东方汽轮机有限公司 清洁高效透平动力装备全国重点实验室 德阳 618000 2 华北电力大学 电站能量传递转化与系统教育部重点实验室 北京 102206 |
|
Oxidation Behavior of Valve Materials Used in Steam Turbine in Supercritical Water Environment |
WANG Fenling1, SHANG Limei1, ZHANG Naiqiang2, ZHU Zhongliang2( ) |
1 State Key Laboratory of Clean & Efficient Turbomachinery Power Equipment-High Temperature Materials Research Institute, Dongfang Electric Corporation, Dongfang Turbing Corporation Limited, Deyang 618000, China 2 Key Laboratory of Power Station Energy Transfer, Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China |
引用本文:
王芬玲, 尚丽梅, 张乃强, 朱忠亮. 超临界水环境中汽轮机阀门材料氧化特性研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1219-1232.
Fenling WANG,
Limei SHANG,
Naiqiang ZHANG,
Zhongliang ZHU.
Oxidation Behavior of Valve Materials Used in Steam Turbine in Supercritical Water Environment[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1219-1232.
[1] |
Wang B, Huang Y J, Xiong D B, et al. Effect of gas nitriding on oxidation behavior of F92 steel in air at 700 ℃ [J]. Heat Treat. Met., 2022, 47(6): 240
doi: 10.13251/j.issn.0254-6051.2022.06.043
|
[1] |
汪 博, 黄一君, 熊定标 等. 气体渗氮对F92钢在700 ℃空气中氧化行为的影响 [J]. 金属热处理, 2022, 47(6): 240
|
[2] |
Wang Z J, Sun F H. Milling property of ferrite F92 heat-resistant steel [J]. Mater. Mech. Eng., 2009, 33(5): 90
|
[2] |
王志坚, 孙方宏. 新型F92铁素体耐热钢的铣削加工性能 [J]. 机械工程材料, 2009, 33(5): 90
|
[3] |
Shen K, Cai W H, Du S M, et al. Effect of shot peening on high-temperature steam oxidation behavior of martensitic heat-resistant steel [J]. Heat Treat. Met., 2021, 46(2): 66
doi: 10.13251/j.issn.0254-6051.2021.02.012
|
[3] |
谌 康, 蔡文河, 杜双明 等. 喷丸对马氏体耐热钢高温蒸汽氧化行为的影响 [J]. 金属热处理, 2021, 46(2): 66
|
[4] |
Du C L, Hui X T, Yang H Q, et al. Welded joints performance test and research of China-made F92 heat-resistant steel [J]. Boiler Technol., 2009, 40(3): 52
|
[4] |
杜春雷, 惠晓涛, 杨惠勤 等. 国产F92耐热钢焊接接头性能试验与研究 [J]. 锅炉技术, 2009, 40(3): 52
|
[5] |
Wei X. Studies on heat treatment and welding properties of F91 material for main steam isolation valve [D]. Dalian: Dalian University of Technology, 2016
|
[5] |
魏 雪. 主蒸汽隔离阀用F91材料热处理与焊接性能的研究 [D]. 大连: 大连理工大学, 2016
|
[6] |
Shi Q Q, Liu J, Yan W, et al. High temperature oxidation behavior of SIMP steel and T91 steel at 800 ℃ [J]. Chin. J. Mater. Res., 2016, 30: 81
|
[6] |
石全强, 刘 坚, 严 伟 等. SIMP钢和T91钢在800 ℃的高温氧化行为 [J]. 材料研究学报, 2016, 30: 81
doi: 10.11901/1005.3093.2015.230
|
[7] |
Gao W H, Shen Z, Zhang L F. Corrosion behavior of T91 steel in supercritical water [J]. Corros. Prot., 2016, 37: 444
|
[7] |
高文华, 沈 朝, 张乐福. T91钢在超临界水环境中的腐蚀性能 [J]. 腐蚀与防护, 2016, 37: 444
|
[8] |
Chen Y Z, Liang Z Y, Xu Y M, et al. Research on steam oxidation behavior of T91 ferritic heat-resistant steel after long-term service under variable load conditions of the boiler [J]. Proc. CSEE, 2025, 10: 3912
|
[8] |
陈彦泽, 梁志远, 徐一鸣 等. 长期服役T91铁素体耐热钢变负荷工况下蒸汽氧化行为研究 [J]. 中国电机工程学报, 2025, 10: 3912
|
[9] |
Shang C G. Creep, oxidation and creep-oxidation interaction behavior and mechanism of P92/G115 steel in near-service environment [D]. Beijing: University of Science and Technology Beijing, 2023
|
[9] |
尚晨光. P92/G115钢在近服役环境下的蠕变、氧化及其交互行为与机制 [D]. 北京: 北京科技大学, 2023
|
[10] |
Zhu Z L, Xu H, Jiang D F, et al. Influence of temperature on the oxidation behaviour of a ferritic-martensitic steel in supercritical water [J]. Corros. Sci., 2016, 113: 172
|
[11] |
Zhong X Y, Wu X Q, Han E H. Effects of exposure temperature and time on corrosion behavior of a ferritic-martensitic steel P92 in aerated supercritical water [J]. Corros. Sci., 2015, 90: 511
|
[12] |
Cao Y, Norell M. Role of nitrogen uptake during the oxidation of 304L and 904L austenitic stainless steels [J]. Oxid. Met., 2013, 80: 479
|
[13] |
Zhu Z L, Li Y Y, Ma C H, et al. The corrosion behavior of nickel-based alloy Inconel 740 H in supercritical water [J]. Corros. Sci., 2021, 192: 109848
|
[14] |
Yuan X H, Li D J, Wang T J, et al. Oxidation behavior of three different Ni-Cr coatings in 630 ℃/25 MPa supercritical water [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 119
|
[14] |
袁小虎, 李定骏, 王天剑 等. 超临界水环境中三种Ni-Cr涂层氧化特性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 119
|
[15] |
McIntyre N S, Rummery T E, Cook M G, et al. X‐ray photoelectron spectroscopic study of the aqueous oxidation of monel-400 [J]. J. Electrochem. Soc., 1976, 123: 1164
|
[16] |
Uhlenbrock S, Scharfschwerdt C, Neumann M, et al. The influence of defects on the Ni 2p and O 1s XPS of NiO [J]. J. Phys.: Condens. Matter, 1992, 4: 7973
|
[17] |
Zhu Z L, Xu H, Izhar Khan H, et al. Oxidation behaviour of Nimonic 263 in high-temperature supercritical water [J]. Corros. Eng. Sci. Technol., 2018, 53: 617
|
[18] |
Zhu Z L, Ma C H, Li Y Y, et al. Oxidation behavior of nickel-based alloy Inconel617B in supercritical water at 700 ℃ [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 655
|
[18] |
朱忠亮, 马辰昊, 李宇旸 等. 镍基合金Inconel617B在700 ℃超临界水环境中的氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 655
doi: 10.11902/1005.4537.2021.145
|
[19] |
Wang Y, Liu Y, Tang H P, et al. Oxidation behaviors of porous Haynes 214 alloy at high temperatures [J]. Mater. Charact., 2015, 107: 283
|
[20] |
Grünert W, Stakheev A Y, Feldhaus R, et al. Analysis of molybdenum (3d) XPS spectra of supported molybdenum catalysts: an alternative approach [J]. J. Phys. Chem., 1991, 95: 1323
|
[21] |
Tan L, Ren X W, Allen T R. Corrosion behavior of 9-12%Cr ferritic-martensitic steels in supercritical water [J]. Corros. Sci., 2010, 52: 1520
|
[22] |
Yin K J, Qiu S Y, Tang R, et al. Corrosion behavior of ferritic/martensitic steel P92 in supercritical water [J]. J. Supercrit. Fluids, 2009, 50: 235
|
[23] |
Ampornrat P, Was G S. Oxidation of ferritic-martensitic alloys T91, HCM12A and HT-9 in supercritical water [J]. J. Nucl. Mater., 2007, 371: 1
|
[24] |
Bischoff J, Motta A T. Oxidation behavior of ferritic-martensitic and ODS steels in supercritical water [J]. J. Nucl. Mater., 2012, 424: 261
|
[25] |
Zhu Z L. Research on corrosion of Materials in power plant’s superheater in supercritical water [D]. Beijing: North China Electric Power University (Beijing), 2017
|
[25] |
朱忠亮. 电站过热器材料在超临界水中的腐蚀机理研究 [D]. 北京: 华北电力大学(北京), 2017
|
[26] |
Bischoff J, Motta A T, Eichfeld C, et al. Corrosion of ferritic-martensitic steels in steam and supercritical water [J]. J. Nucl. Mater., 2013, 441: 604
|
[27] |
Zhong X Y, Wu X Q, Han E H. The characteristic of oxide scales on T91 tube after long-term service in an ultra-supercritical coal power plant [J]. J. Supercrit. Fluids, 2012, 72: 68
|
[28] |
Jin J Y, Chen D X, Li W Q, et al. The effect of plasma nitriding time on corrosion behavior of 304 stainless steel [J]. Chin. J. Vac. Sci. Technol., 2022, 42: 850
|
[28] |
金佳莹, 陈东旭, 李婉晴 等. 等离子体渗氮时间对304不锈钢腐蚀行为的影响研究 [J]. 真空科学与技术学报, 2022, 42: 850
|
[29] |
Chen Y L, Zhang Z Z, Yao N K, et al. Initial corrosion behavior of non-nitriding and nitriding 38CrMoAl steel in salt spray environment [J]. Surf. Technol., 2021, 50(1): 383
|
[29] |
陈跃良, 张柱柱, 姚念奎 等. 未渗氮和渗氮38CrMoAl钢在盐雾环境中的初期腐蚀行为 [J]. 表面技术, 2021, 50(1): 383
|
[30] |
Evans H E, Lobb R C. Conditions for the initiation of oxide-scale cracking and spallation [J]. Corros. Sci., 1984, 24: 209
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|