Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 515-522     CSTR: 32134.14.1005.4537.2024.213      DOI: 10.11902/1005.4537.2024.213
  研究报告 本期目录 | 过刊浏览 |
载荷对5383铝合金焊接接头电化学腐蚀行为的影响
翟熙伟1,2(), 刘士一2, 王丽1, 贾瑞灵1,2, 张慧霞3
1.中山职业技术学院机电工程学院 中山 528400
2.内蒙古工业大学材料科学与工程学院 呼和浩特 010051
3.中国船舶集团有限公司第七二五研究所 海洋腐蚀与防护全国重点实验室 青岛 266237
Effect of Applied Load on Corrosion Behavior of 5383 Al-alloy Welded Joints
ZHAI Xiwei1,2(), LIU Shiyi2, WANG Li1, JIA Ruiling1,2, ZHANG Huixia3
1.School of Mechatronics Engineering, Zhongshan Polytechnic, Zhongshan 528400, China
2.School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
3.National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
引用本文:

翟熙伟, 刘士一, 王丽, 贾瑞灵, 张慧霞. 载荷对5383铝合金焊接接头电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
Xiwei ZHAI, Shiyi LIU, Li WANG, Ruiling JIA, Huixia ZHANG. Effect of Applied Load on Corrosion Behavior of 5383 Al-alloy Welded Joints[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 515-522.

全文: PDF(10580 KB)   HTML
摘要: 

本文开展了5383铝合金及其焊接接头分别施加不同载荷(50%Rel、80%Rel、100%RelRel为其屈服强度)在天然海水环境中的电化学腐蚀行为研究,采用四点弯曲加载装置进行恒载荷应力腐蚀实验,同时进行电化学测试。结果表明,5383铝合金母材有明显的钝化现象,而焊接接头几乎不存在钝化区间。载荷低于屈服强度时,焊接接头的电荷转移电阻(Rct)比未加载荷降低一个数量级,载荷等于屈服强度时,Rct降低两个数量级。这是因为当载荷增加至屈服强度时,不仅内部的微观结构和应力状态会发生变化,表面钝化膜也难于形成,失去钝化膜对焊接接头的保护作用,腐蚀逐渐向基体内部发展,导致5383铝合金焊接接头的腐蚀速率增加。

关键词 腐蚀行为铝合金焊接接头钝化膜    
Abstract

Corrosion behavior of 5383 Al-alloy and its welded joints was investigated in a nature seawater by applied different loads (50%Rel, 80%Rel, 100%Rel). Its stress corrosion behavior was assessed via a four-point bending device by applied constant load and electrochemical measurement. The results showed that the bare 5383 Al-alloy exhibited obvious passivation phenomenon, while no passivation for the welded joints. When the applied load was lower than the yield strength, the charge transfer resistance (Rct) of the welded joints decreased by an order of magnitude compared to that without applied load. When the applied load was equal to the yield strength, Rct decreased by two orders of magnitude. This is because when the load is increased up to the level of yield strength, not only the microstructure and stress state of the alloy are changed, but the surface passivation film is also difficult to form. Therefore, due to losing the protective effect of the passivation film, the corrosion may gradually propagate inward to the interior, resulting in an increase in the corrosion rate of welded joints of 5383 Al-alloy.

Key wordscorrosion behavior    Al-alloy    welded joint    passivation film
收稿日期: 2024-07-17      32134.14.1005.4537.2024.213
ZTFLH:  TG172  
基金资助:广东省普通高校重点领域专项(2024ZDZX3070);中山职业技术学院高层次人才科研启动项目(KYG2201)
通讯作者: 翟熙伟,E-mail:xiweizhai@163.com,研究方向为铝合金焊接及接头性能
Corresponding author: ZHAI Xiwei, E-mail: xiweizhai@163.com
作者简介: 翟熙伟,男,1970年生,博士,副教授
MaterialMgSiFeCuMnZnTiCrZrBeAl
Base metal4.000.250.250.200.700.150.150.150.25-Bal.
Filler metal4.300.400.400.100.500.250.150.25-0.0003Bal.
表1  5383铝合金及5183焊丝的化学成分 (mass fraction / %)
图1  四点弯曲加载装置示意图
图2  5383铝合金焊接接头在不同应力下的电化学阻抗谱
图3  5383铝合金焊接接头在不同载荷下电化学阻抗的等效电路图
Applied load / MPaRs / Ω·cm2Qf / F·cm-2nfRf / Ω·cm2Qdl / F·cm-2nctRct / Ω·cm2
09.6882.024 × 10-60.90976.742 × 1042.451 × 10-511.429 × 105
50%Rel12.859.872 × 10-60.87394.379 × 1045.689 × 10-514.851 × 104
80%Rel10.041.673 × 10-50.85102.183 × 1041.372 × 10-412.028 × 104
100%Rel10.263.438 × 10-50.77381.225 × 1044.174 × 10-414.511 × 103
表2  不同载荷下5383铝合金焊接接头电化学阻抗拟合结果
图4  5383铝合金母材与焊接接头在不同外加载荷下的极化曲线
Applied load / MPaEcorr / VEtp / V
Base metalWelded jointsBase metal
50%Rel-0.71902-0.67978-0.60707
80%Rel-0.72407-0.68400-0.63579
100%Rel-0.71304-0.70102-0.66440
表3  不同载荷作用下5383铝合金母材及焊接接头极化曲线的拟合结果
图5  施加载荷为50%Rel时5383铝合金的分段极化曲线
图6  1号试样极化测试后的微观形貌及能谱分析
图7  2号试样极化测试后的表面形貌
图8  3号试样极化测试后的表面形貌和能谱线扫描分析
图9  4号试样极化测试后的表面形貌和EDS线扫描分析
图10  不同载荷下5383铝合金表面的Mott-schottky曲线
图11  5383铝合金在不同载荷下形成钝化膜的Efb与Na
1 Wang H. Corrosion behavior of marine 5383 aluminum alloy in simulated seawater [D]. Ningxia: Ningxia University, 2015
1 王 恒. 船用5383铝合金在模拟海水中的腐蚀行为研究 [D]. 宁夏: 宁夏大学, 2015
2 Xu X L, Chen H, Li P, et al. Corrosion fatigue crack initiation behavior of A7N01S-T5 aluminum alloy welding metal [J]. Electr. Weld. Mach., 2015, 45(10): 50
2 徐晓龙, 陈 辉, 李 鹏 等. A7N01S-T5铝合金焊缝金属腐蚀疲劳裂纹萌生行为 [J]. 电焊机, 2015, 45(10): 50
3 Li P R, Fan Q B, Zhu X J, et al. Study of high-speed-impact-induced conoidal fracture of Ti alloy layer in composite armor plate composed of Ti- and Al-alloy layers [J]. Def. Technol., 2021, 17: 1434
doi: 10.1016/j.dt.2020.07.010
4 Chen W J. Study on the corrosion behavior and electrochemical behavior of high-strength aluminum alloy under stress conditions [D]. Changsha: Central South University, 2008
4 陈文敬. 高强铝合金应力条件下的腐蚀行为及其电化学行为研究 [D]. 长沙: 中南大学, 2008
5 Fujii T, Ito D, Shimamura Y. Growth characteristics of stress corrosion cracking in high-strength 7075 aluminum alloy in sodium chloride solutions [J]. Eng. Fract. Mech., 2023, 292: 109657
6 Xiong Y D, Robson J D, Cao Z J, et al. Mitigation effects of over-aging (T73) induced intergranular corrosion on stress corrosion cracking of AA7075 aluminum alloy and behaviors of η phase grain boundary precipitates during the intergranular corrosion formation [J]. Corros. Sci., 2023, 225: 111570
7 Wang M T, Wang L W, Pang K, et al. Understanding stress corrosion cracking behavior of 7085-T7651 aluminum alloy in polluted atmosphere [J]. Chin. J. Aeronaut., 2023, 36: 408
8 Zhou B, Yang L, Yang S B, et al. Stress corrosion behavior of 6082 aluminum alloy [J]. Mater. Corros., 2020, 71: 1194
doi: 10.1002/maco.201911433
9 Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
10 Yu M, Wei X D, Fan S Y, et al. Corrosion behavior of 2297 Al-Li alloy under tensile load [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 439
10 于 美, 魏新帝, 范世洋 等. 应力作用下2297铝锂合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 439
11 Zhang E S, Guo D X, Wang Y C, et al. Mechanical properties degradation of aluminum alloys under corrosion environment [J]. Ordnance Mater. Sci. Eng., 2014, 37(5): 23
11 张恩山, 郭东旭, 王燕昌 等. 腐蚀环境中铝合金材料力学性能退化研究 [J]. 兵器材料科学与工程, 2014, 37(5): 23
12 Zhang H, Sun D T, Zhang H, et al. Progress in corrosion behavior of friction stir welded aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 175
12 张 华, 孙大同, 张 贺 等. 铝合金搅拌摩擦焊接接头腐蚀行为研究进展 [J]. 中国腐蚀与防护学报 2013, 33: 175
13 Cabrini M, Bocchi S, D'Urso G, et al. Effect of load on the corrosion behavior of friction stir welded AA7075-T6 aluminum alloy [J]. Materials, 2020, 13: 2600
14 Qi X, Jiang B, Song R G. Effects of ageing treatment on corrosion behavior of 7075 aluminum alloy coated by micro arc oxidation (MAO) [J]. Corros. Sci., 2022, 199: 110164
15 Chen C F, Baart B V, Zhang J Q, et al. Polystyrene/TiO2 nanocomposite coating for strength and toughness enhancement of aluminum alloy 2024-T3 in accelerated stress corrosion cracking [J]. Prog. Org. Coat., 2021, 161: 106458
16 Lü X D. Stress corrosion behavior of high-strength and high-magnesium aluminum alloys under constant strain conditions in seawater [D]. Changsha: Beijing University of Chemical Technology, 2022
16 吕晓丹. 船用高强高镁铝合金在模拟海水中恒应变条件下应力腐蚀行为研究 [D]. 长沙: 北京化工大学, 2022
17 Sun Q, Wang H J, Yu S, et al. Reducing stress corrosion cracking susceptibility of high-strength aluminum alloy and its fastener by a novel electromagnetic shocking treatment [J]. J. Alloy. Compd., 2023, 960: 170917
18 Wang M T, Wang L W, Yang W D, et al. Study on the roles of bisulfite in the stress corrosion cracking of 7050-T7451 aluminum alloy in the thin electrolyte layer environment [J]. Corros. Sci., 2023, 215: 111030
19 Wang J T, Chen J W, Zhang Y K, et al. Influence of ultrasonic impact treatment on stress corrosion of 7075 aluminum alloy and its welded joints [J]. Eng. Fail. Anal., 2023, 144: 106908
20 Ren J P, Song R G. Effect of two-stage ageing on mechanical properties and sensitivity to hydrogen embrittlement of 7050 aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 359
20 任建平, 宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 359
doi: 10.11902/1005.4537.2018.160
21 Pan Y Z, Wang Y, Guo F Q, et al. Stress corrosion behavior of friction stir welding joint of 7N01 aluminum alloy [J]. J. Mater. Res. Technol., 2021, 15: 1130
22 Nguyen T T, Bolivar J, Shi Y, et al. A phase field method for modeling anodic dissolution induced stress corrosion crack propagation [J]. Corros. Sci., 2018, 132: 146
23 Peng F G, Deng R. Mott-Schottky curve analysis of stainless steel nano coating under chlorine environment [J]. J. Jiujiang Vocat. Tech. Coll., 2016, (1): 67
23 彭福官, 邓 锐. 不锈钢纳米涂层含氯环境下Mott-Schottky曲线分析 [J]. 九江职业技术学院学报, 2016, (1): 67
[1] 王明洋, 夏大海. 高强铝合金氢脆机理研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
[2] 许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[3] 燕冰川, 曾云鹏, 张宁, 史显波, 严伟. 石油管材用含Cu钢焊接接头的微生物腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[4] 翁硕, 孟超, 罗陵华, 袁奕雯, 赵礼辉, 冯金芝. 基于元胞自动机法的AA7075-T651铝合金在力-化学交互作用下腐蚀损伤特征演化规律研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1507-1517.
[5] 张雅妮, 王思敏, 樊冰. TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[6] 史先飞, 陈晓华, 满成. HRB400钢在模拟混凝土孔隙液中的自然钝化行为及耐蚀性能的研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1213-1222.
[7] 彭文山, 邢少华, 钱峣, 蔺存国, 侯健, 张大磊. 流动海水冲刷下TA2纯钛管路钝化膜腐蚀特性研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[8] 樊志彬, 高智悦, 宗立君, 吴亚平, 李辛庚, 姜波, 杜宝帅. 1050A铝合金在山东不同典型环境中的大气腐蚀行为特征研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1055-1063.
[9] 乔泽, 李清泉, 刘晓航, 李燚周. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[10] 杨海云, 刘春泉, 熊芬, 陈敏纳, 谢岳林, 彭龙生, 孙胜, 刘海洲. 超高速激光熔覆制备耐腐蚀涂层研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.
[11] 巫海亮, 陈宇强, 黄亮, 顾宏宇, 孙宏博, 刘佳俊, 王乃光, 宋宇峰. 高铁散热器用3003铝合金焊接隔板的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[12] 王玉雪, 朱澳鸿, 王力伟, 崔中雨. 两种新型Ni-Cr-Mo-V钢在模拟海水环境中的腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 918-926.
[13] 翁硕, 孟超, 朱江峰, 王艾, 常馨, 康妘, 何小田, 赵礼辉. 应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1029-1037.
[14] 何佳璇, 张羽彤, 管旭东, 唐建华, 黄海, 赵旭辉, 唐聿明, 左禹. 铝合金微通道换热器的腐蚀防护现状与进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[15] 刘久云, 董立谨, 张言, 王勤英, 刘丽. 油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.