Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (1): 20-32     CSTR: 32134.14.1005.4537.2024.267      DOI: 10.11902/1005.4537.2024.267
  综合评述 本期目录 | 过刊浏览 |
热障涂层金属粘结层制备与研究进展
张晗, 刘轩溱, 黄爱辉, 赵晓峰, 陆杰()
上海交通大学材料科学与工程学院 上海市先进高温材料及精密成型重点研究室 上海 200240
Manufacturing and Research Progress in Metallic Bond Coats for Thermal Barrier Coatings
ZHANG Han, LIU Xuanzhen, HUANG Aihui, ZHAO Xiaofeng, LU Jie()
Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

张晗, 刘轩溱, 黄爱辉, 赵晓峰, 陆杰. 热障涂层金属粘结层制备与研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
Han ZHANG, Xuanzhen LIU, Aihui HUANG, Xiaofeng ZHAO, Jie LU. Manufacturing and Research Progress in Metallic Bond Coats for Thermal Barrier Coatings[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 20-32.

全文: PDF(14840 KB)   HTML
摘要: 

热障涂层是航空发动机和地面燃气轮机提升工作效率、延长服役寿命的关键技术和重要手段。粘结层作为热障涂层系统中的重要组成部分,一方面可缓解陶瓷层和高温合金基体间的热不匹配应力,提高热障涂层系统热稳定性;另一方面,高温下通过生长一层致密且连续的Al2O3层,保护合金基体免受氧化和腐蚀。因此,粘结层性能直接决定了热障涂层系统的服役寿命。本文系统总结了传统粘结层材料、制备方法及其优缺点等方面的研究进展,同时介绍了新型高熵合金粘结层体系,重点关注其成分设计、结构及抗氧化性能等方面的研究现状及不足。最后,对粘结层材料的研究方向进行了展望。

关键词 热障涂层金属粘结层高温氧化NiAlMCrAlY高熵合金    
Abstract

Thermal barrier coatings (TBCs) are widely used to protect the key components of areo- and land-based turbine engines, which is a key technology and an important means to improve engines efficiency and extend service life. The bond coat, as an important component of the TBC system, can relieve the thermal mismatch between the ceramic topcoat and the superalloy substrate, and improve the thermal stability of the thermal barrier coating system. On the other hand, it protects the superalloy substrate from oxidation and corrosion at high temperatures by forming a dense and continuous of Al2O3 layer. Therefore, the service life of the TBCs is predominantly dependent on the performance of bond coat. In this paper, the research progress on the conventional bond coat materials and preparation methods, as well as their advantages and disadvantages are introduced. The newly high-entropy alloy bond coat system is introduced with emphasis on the research progress of composition design, structure and oxidation resistance, as well as its deficiencies. Finally, the research trend of high entropy alloy bond coat materials is prospected.

Key wordsthermal barrier coatings    metallic bond coat    high-temperature oxidation    NiAl    MCrAlY    high-entropy alloy
收稿日期: 2024-08-25      32134.14.1005.4537.2024.267
ZTFLH:  TG174  
基金资助:国家自然科学基金(52201082; 51971139)
通讯作者: 陆杰,E-mail:lu-jie@sjtu.edu.cn,研究方向为热障涂层
Corresponding author: LU Jie, E-mail: lu-jie@sjtu.edu.cn
作者简介: 张 晗,女,1994年生,博士生
图1  Ni-Al体系二元相图[18],Ni-Pt-Al三元体系在1100/1150 ℃的等温相图[22]及其在1150 ℃氧化100 h后氧化膜组成[19]
图2  两种NiPtAl涂层的微观结构[16,23]
MCrAlYElemental compositionApplication
TypeProductCoNiCrAlYHfSi
CoNiCrAlYAmdry 995Bal.322180.5--CPW 528
Diamalloy 4700GE B50TF195 Class A
GE B50AG5 Class B
NiCrAlYAmdry 962-Bal.22101--MSRR 9507/47
GE B50A892/B50AG6
GE B50TF162 Class A
NiCoCrAlYAmdry 36523Bal.17120.6--PWA 1365-2/1376
CPW 387
Amdry 38622Bal.17120.50.50.4PWA 1384
PWA 1386
Chromally C-77
表1  工业燃气轮机和航空发动机中的商用MCrAlY产品[41] (mass fraction / %)
ManufacturingAdvantagesDisadvantages
APSStable spraying process. The matrix is less heated and theHigh porosity. Metal particles would be
sample is not easy to deformseriously oxidized during spraying
LPPS/VPSLow porosity. Effectively prevent oxidation ofNeed low vacuum/vacuum environment
metal particles during sprayingand high cost
HVOF/HVAFLow spraying temperature and fast particle flight speed.Large fuel consumption and
The coating has high density and low oxygen contentrelatively high cost
EB-PVDGood uniformity, high density and less defectsThe equipment is expensive and
complex to operate
AIPHigh density, fast deposition rate, relatively simpleThe coating is easy to have large
equipment and low costparticle pollution
表2  MCrAlY涂层制备工艺的优缺点
图3  3种不同喷涂技术制备的典型MCrAlY涂层形貌[44,53]
图4  AlCoCrFeNi高熵合金纳米共格A2/B2相结构[67]
图5  AlCoCrFeNi和AlCoCr0.8FeNi高熵合金的相变和微观结构分析[70]
图6  AlCoCrFeNiY高熵合金粘结层TEM分析[79]
1 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
pmid: 11951028
2 Clarke D R, Phillpot S R. Thermal barrier coating materials [J]. Mater. Today, 2005, 8: 22
3 Guo H B, Gong S K, Xu H B. Progress in thermal barrier coatings for advanced aeroengines [J]. Mater. China, 2009, 28(9-10): 18
3 郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展 [J]. 中国材料进展, 2009, 28(9-10): 18
4 Bao Z B, Jiang C Y, Zhu S L, et al. High temperature protective bond coats: development and effect of reactive element [J]. J. Aeronaut. Mater., 2018, 38(2): 21
4 鲍泽斌, 蒋成洋, 朱圣龙 等. 高温防护金属涂层的发展及活性元素效应 [J]. 航空材料学报, 2018, 38(2): 21
doi: 10.11868/j.issn.1005-5053.2018.001004
5 Zheng L, Guo H B, Guo L, et al. New generation thermal barrier coatings for ultrahigh temperature applications [J]. J. Aeronaut. Mater., 2012, 32(6): 14
5 郑 蕾, 郭洪波, 郭 磊 等. 新一代超高温热障涂层研究 [J]. 航空材料学报, 2012, 32(6): 14
6 Guo H B, Gong S K, Xu H B. Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2722
6 郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展 [J]. 航空学报, 2014, 35: 2722
doi: 10.7527/S1000-6893.2014.0161
7 Tolpygo V K, Clarke D R. On the rumpling mechanism in nickel-aluminide coatings: part II: characterization of surface undulations and bond coat swelling [J]. Acta Mater., 2004, 52: 5129
8 Wu R T, Wang X, Atkinson A. On the interfacial degradation mechanisms of thermal barrier coating systems: effects of bond coat composition [J]. Acta Mater., 2010, 58: 5578
9 Yang Y F, Jiang C Y, Yao H R, et al. Cyclic oxidation and rumpling behaviour of single phase β-(Ni, Pt)Al coatings with different thickness of initial Pt plating [J]. Corros. Sci., 2016, 111: 162
10 Mumm D R, Evans A G. On the role of imperfections in the failure of a thermal barrier coating made by electron beam deposition [J]. Acta Mater., 2000, 48: 1815
11 Cao F, Tryon B, Torbet C J, et al. Microstructural evolution and failure characteristics of a NiCoCrAlY bond coat in “hot spot” cyclic oxidation [J]. Acta Mater., 2009, 57: 3885
12 Wang S X, Li J C, Wang Q T, et al. Application and development of platinum modified aluminide coating [J]. Therm. Spray Technol., 2020, 12(3): 18
12 王世兴, 李建超, 王秋童 等. 铂改性铝化物涂层的应用与发展 [J]. 热喷涂技术, 2020, 12(3): 18
13 Nicholls J E. Hot-dipped aluminium coatings [J]. Anti-Corros. Methods Mater., 1964, 11: 16
14 Nicholls J R. Advances in coating design for high-performance gas turbines [J]. MRS Bull., 2003, 28: 659
15 Yu C T, Yang Y F, Bao Z B, et al. Research progress in preparation and development of excellent bond coats for advanced thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 395
15 余春堂, 阳颖飞, 鲍泽斌 等. 先进高温热障涂层用高性能粘接层制备及研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 395
doi: 10.11902/1005.4537.2019.154
16 Das D K. Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys [J]. Prog. Mater. Sci., 2013, 58: 151
17 Zhang Y, Haynes J A, Wright G, et al. Effects of Pt incorporation on the isothermal oxidation behavior of chemical vapor deposition aluminide coatings [J]. Metall. Mater. Trans., 2001, 32A: 1727
18 Pint B A. The role of chemical composition on the oxidation performance of aluminide coatings [J]. Surf. Coat. Technol., 2004, 188-189: 71
19 Gleeson B, Mu N, Hayashi S. Compositional factors affecting the establishment and maintenance of Al2O3 scales on Ni-Al-Pt systems [J]. J. Mater. Sci., 2009, 44: 1704
20 Shirvani K, Rashidghamat A. Evolution of oxide scale on aluminide and Pt-aluminide coatings exposed to type I (870 oC) hot corrosion [J]. Oxid. Met., 2016, 85: 75
21 Tawancy H M, Abbas N M, Rhys-Jones T N. Role of platinum in aluminide coatings [J]. Surf. Coat. Technol., 1991, 49: 1
22 Hayashi S, Ford S I, Young D J, et al. α-NiPt(Al) and phase equilibria in the Ni-Al-Pt system at 1150 oC [J]. Acta Mater., 2005, 53: 3319
23 Tolpygo V K, Murphy K S, Clarke D R. Effect of Hf, Y and C in the underlying superalloy on the rumpling of diffusion aluminide coatings [J]. Acta Mater., 2008, 56: 489
24 Tolpygo V K, Clarke D R. Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation [J]. Acta Mater., 2000, 48: 3283
25 Sato A, Harada H, Kawagishi K. Development of a new bond coat “EQ coating” system [J]. Metall. Mater. Trans., 2006, 37A: 789
26 Goward G W, Boone D H. Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys [J]. Oxid. Met., 1971, 3: 475
27 Zhang Y, Pint B A, Haynes J A, et al. A platinum-enriched γ + γ′ two-phase bond coat on Ni-based superalloys [J]. Surf. Coat. Tech‐nol., 2005, 200: 1259
28 Hemker K J, Nix W D. High-temperature creep of the intermetallic alloy Ni3Al [J]. Metall. Trans., 1993, 24A: 335
29 Zhao X, Shapiro I P, Xiao P. Spinel formation in thermal barrier systems with a Pt-enriched γ-Ni + γ′-Ni3Al bond coat [J]. Surf. Coat. Technol., 2008, 202: 2905
30 Pint B A. Experimental observations in support of the dynamic segregation theory to explain the reactive-element effect [J]. Oxid. Met., 1996, 45: 1
31 Pint B A, Alexander K B. Grain boundary segregation of cation dopants in α‐Al2O3 scales [J]. J. Electrochem. Soc., 2019, 145: 1819
32 Zhang T, Guo H B, Gong S K, et al. Effects of Dy on the adherence of Al2O3/NiAl interface: a combined first-principles and experimental studies [J]. Corros. Sci., 2013, 66: 59
33 Li D Q, Guo H B, Wang D, et al. Cyclic oxidation of β-NiAl with various reactive element dopants at 1200 oC [J]. Corros. Sci., 2013, 66: 125
34 Zhao C S, Zhou Y H, Zou Z H, et al. Effect of alloyed Lu, Hf and Cr on the oxidation and spallation behavior of NiAl [J]. Corros. Sci., 2017, 126: 334
35 Zhao C S, Luo L R, Lu J, et al. Investigation on the performance of air plasma sprayed thermal barrier coating with Lu/Hf-doped NiAl bond coat [J]. Surf. Coat. Technol., 2019, 360: 140
36 Guo H B, Li D Q, Zheng L, et al. Effect of co-doping of two reactive elements on alumina scale growth of β-NiAl at 1200 oC [J]. Corros. Sci., 2014, 88: 197
37 He J, Peng H, Gong S K, et al. Synergistic effect of reactive element co-doping in two-phase (γ′ + β)Ni-Al alloys [J]. Corros. Sci., 2017, 120: 130
38 Lan H, Zhang W G, Yang Z G. Investigation of Pt-Dy co-doping effects on isothermal oxidation behavior of (Co, Ni)-based alloy [J]. J. Rare Earths, 2012, 30: 928
39 He J, Guo H B, Zhang Y L, et al. Improved hot-corrosion resistance of Si/Cr co-doped NiAlDy alloy in simulative sea-based engine environment [J]. Corros. Sci., 2014, 85: 232
40 Meng X X, Pei Y W, Shao W, et al. Cyclic oxidation behaviour of Co/Si co-doped β-NiAl coating on nickel based superalloys [J]. Corros. Sci., 2018, 133: 112
41 Chen W J, Song P, Gao D, et al. Metallic bond coats for thermally sprayed thermal barrier coatings applied to aero-engines and industrial gas turbines: review and prospect [J]. J. Aeronaut. Mater., 2022, 42(1): 15
41 陈卫杰, 宋 鹏, 高 栋 等. 航空发动机和工业燃气轮机热喷涂热障涂层用金属黏结层: 回顾与展望 [J]. 航空材料学报, 2022, 42 (1): 15
doi: 10.11868/j.issn.1005-5053.2021.000217
42 Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings [J]. Prog. Mater. Sci., 2001, 46: 505
43 Liu X Z, Chen Y, Lu J, et al. A comparative study on the oxidation behavior of Y-, Hf- and YHf-doped NiCoCrAl alloys: effect of reactive elements [J]. Corros. Sci., 2023, 218: 111160
44 Sloof W G, Nijdam T J. On the high-temperature oxidation of MCrAlY coatings [J]. Int. J. Mater. Res., 2009, 100: 1318
45 Brady M P, Wright I G, Gleeson B. Alloy design strategies for promoting protective oxide-scale formation [J]. JOM, 2000, 52: 16
46 Achar D R G, Munoz-Arroyo R, Singheiser L, et al. Modelling of phase equilibria in MCrAlY coating systems [J]. Surf. Coat. Technol., 2004, 187: 272
47 Raffaitin A, Crabos F, Andrieu E, et al. Advanced burner-rig test for oxidation-corrosion resistance evaluation of MCrAlY/superalloys systems [J]. Surf. Coat. Technol., 2006, 201: 3829
48 Czech N, Schmitz F, Stamm W. Microstructural analysis of the role of rhenium in advanced MCrAlY coatings [J]. Surf. Coat. Technol., 1995, 76-77: 28
49 Sundman B, Jansson B, Andersson J-O. The Thermo-Calc databank system [J]. Calphad, 1985, 9: 153
50 Dupin N, Sundman B. A thermodynamic database for Ni‐base superalloys [J]. Scand. J. Metall., 2001, 30: 184
51 Zhao C S. Study on preparation and oxidation resistance of reactive element doped NiAl bond coat [D]. Shanghai: Shanghai Jiao Tong University, 2019
51 赵春山. 活性元素掺杂 NiAl 粘结层制备及抗氧化性能研究 [D]. 上海: 上海交通大学, 2019
52 Lu J, Zhang H, Chen Y, et al. Effect of microstructure of a NiCoCrAlY coating fabricated by high-velocity air fuel on the isothermal oxidation [J]. Corros. Sci., 2019, 159: 108126
53 Chen Y, Zhao X F, Xiao P. Effect of microstructure on early oxidation of MCrAlY coatings [J]. Acta Mater., 2018, 159: 150
54 Meng G H, Liu H, Liu M J, et al. Large-grain α-Al2O3 enabling ultra-high oxidation-resistant MCrAlY bond coats by surface pre-agglomeration treatment [J]. Corros. Sci., 2020, 163: 108275
55 Yang Y F, Yao H R, Bao Z B, et al. Modification of NiCoCrAlY with Pt: part I. Effect of Pt depositing location and cyclic oxidation performance [J]. J. Mater. Sci. Technol., 2019, 35: 341
doi: 10.1016/j.jmst.2018.09.039
56 Li Y Y, Zhang C, Ji H Z, et al. Pt-modification on the thermal cycling behavior of NiCoCrAlYTa coating: a case study [J]. Corros. Sci., 2024, 230: 111934
57 Zhen H J, Peng X. A new approach to manufacture oxidation-resistant NiCrAl overlay coatings by electrodeposition [J]. Corros. Sci., 2019, 150: 121
58 Tian L X, Peng X. Research progress of a novel nano-composited MCrAl(Y) coating prepared by electrodepostion [J]. Surf. Technol., 2022, 51(9): 74
58 田礼熙, 彭 晓. 电沉积新型纳米复合MCrAl(Y)涂层的研究进展 [J]. 表面技术, 2022, 51(9): 74
59 Jiang S M, Xu C Z, Li H Q, et al. High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating I: microstructure evolution [J]. Corros. Sci., 2010, 52: 1746
60 Yu D Q, Lu X Y, Ma J, et al. Study of oxidation behavior of the gradient NiCrAlY coating at 1000 and 1100 oC [J]. Acta Metall. Sin., 2012, 48: 759
60 于大千, 卢旭阳, 马 军 等. 梯度NiCrAlY涂层的1000和1100 ℃氧化行为研究 [J]. 金属学报, 2012, 48: 759
doi: 10.3724/SP.J.1037.2012.00024
61 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
62 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375A-377A: 213
63 Miracle D B, Tsai M H, Senkov O N, et al. Refractory high entropy superalloys (RSAs) [J]. Scr. Mater., 2020, 187: 445
64 Hsu W L, Tsai C W, Yeh A C, et al. Clarifying the four core effects of high-entropy materials [J]. Nat. Rev. Chem., 2024, 8: 471
65 Li Y, Shi P J, Wang M Y, et al. Unveiling microstructural origins of the balanced strength-ductility combination in eutectic high-entropy alloys at cryogenic temperatures [J]. Mater. Res. Lett., 2022, 10: 602
66 Yan X H, Zou Y, Zhang Y. Properties and processing technologies of high-entropy alloys [J]. Mater. Futures, 2022, 1: 022002
67 Lu J, Chen Y, Zhang H, et al. Effect of Al content on the oxidation behavior of Y/Hf-doped AlCoCrFeNi high-entropy alloy [J]. Corros. Sci., 2020, 170: 108691
68 Lu J, Ren G L, Chen Y, et al. Unraveling the oxidation mechanism of an AlCoCrFeNi high-entropy alloy at 1100 oC [J]. Corros. Sci., 2022, 209: 110736
69 Lu J, Zhang H, Li L, et al. Y-Hf co-doped Al1.1CoCr0.8FeNi highentropy alloy with excellent oxidation resistance and nanostructure stability at 1200 oC [J]. Scr. Mater., 2021, 203: 114105
70 Huang A H, Li L, Liu X Z, et al. Phase transformation-induced TGO rumpling failure of an AlCoCrFeNi high-entropy alloy after isothermal oxidation at 1200 oC [J]. Scr. Mater., 2024, 239: 115817
71 Lu J, Chen Y, Zhang H, et al. Y/Hf-doped Al0.7CoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance at 1200 oC [J]. Corros. Sci., 2020, 174: 108803
72 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
73 Huang L F, Sun Y N, Chen N, et al. Simultaneously enhanced strength-ductility of AlCoCrFeNi2.1 eutectic high-entropy alloy via additive manufacturing [J]. Mater. Sci. Eng., 2022, 830A: 142327
74 Chanda B, Potnis G, Jana P P, et al. A review on nano-/ultrafine advanced eutectic alloys [J]. J. Alloy. Compd., 2020, 827: 154226
75 Tiwary C S, Pandey P, Sarkar S, et al. Five decades of research on the development of eutectic as engineering materials [J]. Prog. Mater. Sci., 2022, 123: 100793
76 Lu J, Zhang H, Li L, et al. Y-Hf co-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation and spallation resistance under thermal cycling conditions at 1100 oC and 1200 oC [J]. Corros. Sci., 2021, 187: 109515
77 Lu J, Zhang H, Chen Y, et al. Y-doped AlCoCrFeNi2.1 eutectic highentropy alloy with excellent oxidation resistance and structure stability at 1000 oC and 1100 oC [J]. Corros. Sci., 2021, 180: 109191
78 Lu J, Zhang H, Ren G L, et al. A comparative study on the oxida tion behavior and failure mechanisms of conventional NiCoCrAl alloy and in-situ composite AlCoCrFeNi2.1 eutectic high-entropy alloy at 1300 oC [J]. Composites, 2024, 269B: 111097
79 Lu J, Chen Y, Li L, et al. An in-situ oxide-dispersion-strengthened AlCoCrFeNiY high-entropy alloy composite coating prepared by AC-HVAF with superior oxidation and spallation resistance [J]. Composites, 2023, 265B: 110933
80 Lu J, Chen Y, Sun Z H, et al. Air plasma sprayed high-entropy AlCoCrFeNiY coating with excellent oxidation and spallation resistance under cyclic oxidation at 1050-1150 oC [J]. Corros. Sci., 2022, 198: 110151
81 Ma T, Huang T H, Hua C, et al. Study on gradient structure and interface mechanical properties of n-8YSZ/AlCoCrFeNi high-entropy coatings [J]. Ceram. Int., 2023, 49: 10305
82 Wang L Q, Zhang F Y, Yan S, et al. Microstructure evolution and mechanical properties of atmosphere plasma sprayed AlCoCrFeNi high-entropy alloy coatings under post-annealing [J]. J. Alloy. Compd., 2021, 872: 159607
83 Meghwal A, Singh S, Anupam A, et al. Nano- and micro-mechanical properties and corrosion performance of a HVOF sprayed AlCoCrFeNi high-entropy alloy coating [J]. J. Alloy. Compd., 2022, 912: 165000
84 Zhang X, Zhang H F, Zhang N N, et al. Oxidation behavior of AlCoCrFeNi bond coating in the YSZ-TBCs produced by APS and PS-PVD method [J]. Ceram. Int., 2024, 50: 17190
85 Ossiansson M, Gupta M, Löbel M, et al. Assessment of CrFeCoNi and AlCrFeCoNi high-entropy alloys as bond coats for thermal barrier coatings [J]. J. Therm. Spray Technol., 2022, 31: 1404
[1] 张彩云, 李帅, 鲍泽斌, 朱圣龙, 王福会. 氧化不同时间(Ni, Pt)Al涂层的退除及再涂覆行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 201-208.
[2] 范春华, 吴钱林, 薛山, 葛佳璐. 添加CrSi对火驱N80碳钢注气井氧化行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(1): 231-236.
[3] 黄勤英, 李彧卓, 阳颖飞, 任盼, 王启伟. Pt改性共晶高熵合金AlCoCrFeNi2.1 热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 115-126.
[4] 郭静波, 杨守华, 周子翼, 牟仁德, 谢云, 舒小勇, 戴建伟, 彭晓. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[5] 王昆, 邹兰欣, 郭磊, 闫凯, 叶福兴, 刘洪丽, 郭洪波. 航空发动机及燃气轮机热障涂层高温腐蚀与防护[J]. 中国腐蚀与防护学报, 2025, 45(1): 1-19.
[6] 许习文, 舒小勇, 陈智群, 何海瑞, 董舒赫, 房雨晴, 彭晓. DD6单晶Ni基高温合金表面CVDAl涂层的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 148-154.
[7] 陈辉, 徐福斌, 方亚雄, 朱忠亮. Super304H不锈钢在605 ℃640 ℃超临界水中的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
[8] 裴海清, 肖竞博, 李微, 于昊玉, 温志勋, 岳珠峰. Al-O元素聚集对镍基单晶高温合金氧化影响的第一性原理研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 173-181.
[9] 李开洋, 翟蕴龙, 胡新宇, 吴宏, 刘彬, 邢少华, 侯健, 张繁, 张乃强. 共晶高熵合金高温腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[10] 曹甫洋, 王浩权, 季谦, 丁恒楠, 袁志钟, 罗锐. 大气等离子喷涂FeCoCrNiMn高熵合金涂层的耐海水腐蚀与磨损性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1529-1537.
[11] 吴亮亮, 殷若展, 陈朝旭, 梁君岳, 孙擎擎, 伍廉奎, 曹发和. Ti45Al8.5Nb合金表面Zr-SiO2 复合涂层的制备及其抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[12] 吴铭, 任延杰, 马灼春, 张思甜, 陈荐, 牛焱. F55双相不锈钢在800~1000℃纯氧气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2024, 44(5): 1332-1338.
[13] 程永贺, 付俊伟, 赵茂密, 沈云军. 高熵合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[14] 潘宗宇, 刘静, 姜志忠, 罗林, 贾寒冰, 刘欣雨. Fe34Cr30Mo15Ni15Nb3Al3 高熵合金在500℃下氧含量为10-6%的液态铅铋合金中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1353-1360.
[15] 张帮彦, 吴洪斌, 胡雪刚, 董家键, 郑世杰, 尹蔚蔚, 张方宇, 田礼熙, 刘光明. 机械合金化+放电等子烧结FeCrAl/La2Zr2O7 复合材料高温氧化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 965-971.