|
|
热障涂层金属粘结层制备与研究进展 |
张晗, 刘轩溱, 黄爱辉, 赵晓峰, 陆杰( ) |
上海交通大学材料科学与工程学院 上海市先进高温材料及精密成型重点研究室 上海 200240 |
|
Manufacturing and Research Progress in Metallic Bond Coats for Thermal Barrier Coatings |
ZHANG Han, LIU Xuanzhen, HUANG Aihui, ZHAO Xiaofeng, LU Jie( ) |
Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
张晗, 刘轩溱, 黄爱辉, 赵晓峰, 陆杰. 热障涂层金属粘结层制备与研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
Han ZHANG,
Xuanzhen LIU,
Aihui HUANG,
Xiaofeng ZHAO,
Jie LU.
Manufacturing and Research Progress in Metallic Bond Coats for Thermal Barrier Coatings[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 20-32.
1 |
Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
pmid: 11951028
|
2 |
Clarke D R, Phillpot S R. Thermal barrier coating materials [J]. Mater. Today, 2005, 8: 22
|
3 |
Guo H B, Gong S K, Xu H B. Progress in thermal barrier coatings for advanced aeroengines [J]. Mater. China, 2009, 28(9-10): 18
|
3 |
郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展 [J]. 中国材料进展, 2009, 28(9-10): 18
|
4 |
Bao Z B, Jiang C Y, Zhu S L, et al. High temperature protective bond coats: development and effect of reactive element [J]. J. Aeronaut. Mater., 2018, 38(2): 21
|
4 |
鲍泽斌, 蒋成洋, 朱圣龙 等. 高温防护金属涂层的发展及活性元素效应 [J]. 航空材料学报, 2018, 38(2): 21
doi: 10.11868/j.issn.1005-5053.2018.001004
|
5 |
Zheng L, Guo H B, Guo L, et al. New generation thermal barrier coatings for ultrahigh temperature applications [J]. J. Aeronaut. Mater., 2012, 32(6): 14
|
5 |
郑 蕾, 郭洪波, 郭 磊 等. 新一代超高温热障涂层研究 [J]. 航空材料学报, 2012, 32(6): 14
|
6 |
Guo H B, Gong S K, Xu H B. Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2722
|
6 |
郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展 [J]. 航空学报, 2014, 35: 2722
doi: 10.7527/S1000-6893.2014.0161
|
7 |
Tolpygo V K, Clarke D R. On the rumpling mechanism in nickel-aluminide coatings: part II: characterization of surface undulations and bond coat swelling [J]. Acta Mater., 2004, 52: 5129
|
8 |
Wu R T, Wang X, Atkinson A. On the interfacial degradation mechanisms of thermal barrier coating systems: effects of bond coat composition [J]. Acta Mater., 2010, 58: 5578
|
9 |
Yang Y F, Jiang C Y, Yao H R, et al. Cyclic oxidation and rumpling behaviour of single phase β-(Ni, Pt)Al coatings with different thickness of initial Pt plating [J]. Corros. Sci., 2016, 111: 162
|
10 |
Mumm D R, Evans A G. On the role of imperfections in the failure of a thermal barrier coating made by electron beam deposition [J]. Acta Mater., 2000, 48: 1815
|
11 |
Cao F, Tryon B, Torbet C J, et al. Microstructural evolution and failure characteristics of a NiCoCrAlY bond coat in “hot spot” cyclic oxidation [J]. Acta Mater., 2009, 57: 3885
|
12 |
Wang S X, Li J C, Wang Q T, et al. Application and development of platinum modified aluminide coating [J]. Therm. Spray Technol., 2020, 12(3): 18
|
12 |
王世兴, 李建超, 王秋童 等. 铂改性铝化物涂层的应用与发展 [J]. 热喷涂技术, 2020, 12(3): 18
|
13 |
Nicholls J E. Hot-dipped aluminium coatings [J]. Anti-Corros. Methods Mater., 1964, 11: 16
|
14 |
Nicholls J R. Advances in coating design for high-performance gas turbines [J]. MRS Bull., 2003, 28: 659
|
15 |
Yu C T, Yang Y F, Bao Z B, et al. Research progress in preparation and development of excellent bond coats for advanced thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 395
|
15 |
余春堂, 阳颖飞, 鲍泽斌 等. 先进高温热障涂层用高性能粘接层制备及研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 395
doi: 10.11902/1005.4537.2019.154
|
16 |
Das D K. Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys [J]. Prog. Mater. Sci., 2013, 58: 151
|
17 |
Zhang Y, Haynes J A, Wright G, et al. Effects of Pt incorporation on the isothermal oxidation behavior of chemical vapor deposition aluminide coatings [J]. Metall. Mater. Trans., 2001, 32A: 1727
|
18 |
Pint B A. The role of chemical composition on the oxidation performance of aluminide coatings [J]. Surf. Coat. Technol., 2004, 188-189: 71
|
19 |
Gleeson B, Mu N, Hayashi S. Compositional factors affecting the establishment and maintenance of Al2O3 scales on Ni-Al-Pt systems [J]. J. Mater. Sci., 2009, 44: 1704
|
20 |
Shirvani K, Rashidghamat A. Evolution of oxide scale on aluminide and Pt-aluminide coatings exposed to type I (870 oC) hot corrosion [J]. Oxid. Met., 2016, 85: 75
|
21 |
Tawancy H M, Abbas N M, Rhys-Jones T N. Role of platinum in aluminide coatings [J]. Surf. Coat. Technol., 1991, 49: 1
|
22 |
Hayashi S, Ford S I, Young D J, et al. α-NiPt(Al) and phase equilibria in the Ni-Al-Pt system at 1150 oC [J]. Acta Mater., 2005, 53: 3319
|
23 |
Tolpygo V K, Murphy K S, Clarke D R. Effect of Hf, Y and C in the underlying superalloy on the rumpling of diffusion aluminide coatings [J]. Acta Mater., 2008, 56: 489
|
24 |
Tolpygo V K, Clarke D R. Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation [J]. Acta Mater., 2000, 48: 3283
|
25 |
Sato A, Harada H, Kawagishi K. Development of a new bond coat “EQ coating” system [J]. Metall. Mater. Trans., 2006, 37A: 789
|
26 |
Goward G W, Boone D H. Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys [J]. Oxid. Met., 1971, 3: 475
|
27 |
Zhang Y, Pint B A, Haynes J A, et al. A platinum-enriched γ + γ′ two-phase bond coat on Ni-based superalloys [J]. Surf. Coat. Tech‐nol., 2005, 200: 1259
|
28 |
Hemker K J, Nix W D. High-temperature creep of the intermetallic alloy Ni3Al [J]. Metall. Trans., 1993, 24A: 335
|
29 |
Zhao X, Shapiro I P, Xiao P. Spinel formation in thermal barrier systems with a Pt-enriched γ-Ni + γ′-Ni3Al bond coat [J]. Surf. Coat. Technol., 2008, 202: 2905
|
30 |
Pint B A. Experimental observations in support of the dynamic segregation theory to explain the reactive-element effect [J]. Oxid. Met., 1996, 45: 1
|
31 |
Pint B A, Alexander K B. Grain boundary segregation of cation dopants in α‐Al2O3 scales [J]. J. Electrochem. Soc., 2019, 145: 1819
|
32 |
Zhang T, Guo H B, Gong S K, et al. Effects of Dy on the adherence of Al2O3/NiAl interface: a combined first-principles and experimental studies [J]. Corros. Sci., 2013, 66: 59
|
33 |
Li D Q, Guo H B, Wang D, et al. Cyclic oxidation of β-NiAl with various reactive element dopants at 1200 oC [J]. Corros. Sci., 2013, 66: 125
|
34 |
Zhao C S, Zhou Y H, Zou Z H, et al. Effect of alloyed Lu, Hf and Cr on the oxidation and spallation behavior of NiAl [J]. Corros. Sci., 2017, 126: 334
|
35 |
Zhao C S, Luo L R, Lu J, et al. Investigation on the performance of air plasma sprayed thermal barrier coating with Lu/Hf-doped NiAl bond coat [J]. Surf. Coat. Technol., 2019, 360: 140
|
36 |
Guo H B, Li D Q, Zheng L, et al. Effect of co-doping of two reactive elements on alumina scale growth of β-NiAl at 1200 oC [J]. Corros. Sci., 2014, 88: 197
|
37 |
He J, Peng H, Gong S K, et al. Synergistic effect of reactive element co-doping in two-phase (γ′ + β)Ni-Al alloys [J]. Corros. Sci., 2017, 120: 130
|
38 |
Lan H, Zhang W G, Yang Z G. Investigation of Pt-Dy co-doping effects on isothermal oxidation behavior of (Co, Ni)-based alloy [J]. J. Rare Earths, 2012, 30: 928
|
39 |
He J, Guo H B, Zhang Y L, et al. Improved hot-corrosion resistance of Si/Cr co-doped NiAlDy alloy in simulative sea-based engine environment [J]. Corros. Sci., 2014, 85: 232
|
40 |
Meng X X, Pei Y W, Shao W, et al. Cyclic oxidation behaviour of Co/Si co-doped β-NiAl coating on nickel based superalloys [J]. Corros. Sci., 2018, 133: 112
|
41 |
Chen W J, Song P, Gao D, et al. Metallic bond coats for thermally sprayed thermal barrier coatings applied to aero-engines and industrial gas turbines: review and prospect [J]. J. Aeronaut. Mater., 2022, 42(1): 15
|
41 |
陈卫杰, 宋 鹏, 高 栋 等. 航空发动机和工业燃气轮机热喷涂热障涂层用金属黏结层: 回顾与展望 [J]. 航空材料学报, 2022, 42 (1): 15
doi: 10.11868/j.issn.1005-5053.2021.000217
|
42 |
Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings [J]. Prog. Mater. Sci., 2001, 46: 505
|
43 |
Liu X Z, Chen Y, Lu J, et al. A comparative study on the oxidation behavior of Y-, Hf- and YHf-doped NiCoCrAl alloys: effect of reactive elements [J]. Corros. Sci., 2023, 218: 111160
|
44 |
Sloof W G, Nijdam T J. On the high-temperature oxidation of MCrAlY coatings [J]. Int. J. Mater. Res., 2009, 100: 1318
|
45 |
Brady M P, Wright I G, Gleeson B. Alloy design strategies for promoting protective oxide-scale formation [J]. JOM, 2000, 52: 16
|
46 |
Achar D R G, Munoz-Arroyo R, Singheiser L, et al. Modelling of phase equilibria in MCrAlY coating systems [J]. Surf. Coat. Technol., 2004, 187: 272
|
47 |
Raffaitin A, Crabos F, Andrieu E, et al. Advanced burner-rig test for oxidation-corrosion resistance evaluation of MCrAlY/superalloys systems [J]. Surf. Coat. Technol., 2006, 201: 3829
|
48 |
Czech N, Schmitz F, Stamm W. Microstructural analysis of the role of rhenium in advanced MCrAlY coatings [J]. Surf. Coat. Technol., 1995, 76-77: 28
|
49 |
Sundman B, Jansson B, Andersson J-O. The Thermo-Calc databank system [J]. Calphad, 1985, 9: 153
|
50 |
Dupin N, Sundman B. A thermodynamic database for Ni‐base superalloys [J]. Scand. J. Metall., 2001, 30: 184
|
51 |
Zhao C S. Study on preparation and oxidation resistance of reactive element doped NiAl bond coat [D]. Shanghai: Shanghai Jiao Tong University, 2019
|
51 |
赵春山. 活性元素掺杂 NiAl 粘结层制备及抗氧化性能研究 [D]. 上海: 上海交通大学, 2019
|
52 |
Lu J, Zhang H, Chen Y, et al. Effect of microstructure of a NiCoCrAlY coating fabricated by high-velocity air fuel on the isothermal oxidation [J]. Corros. Sci., 2019, 159: 108126
|
53 |
Chen Y, Zhao X F, Xiao P. Effect of microstructure on early oxidation of MCrAlY coatings [J]. Acta Mater., 2018, 159: 150
|
54 |
Meng G H, Liu H, Liu M J, et al. Large-grain α-Al2O3 enabling ultra-high oxidation-resistant MCrAlY bond coats by surface pre-agglomeration treatment [J]. Corros. Sci., 2020, 163: 108275
|
55 |
Yang Y F, Yao H R, Bao Z B, et al. Modification of NiCoCrAlY with Pt: part I. Effect of Pt depositing location and cyclic oxidation performance [J]. J. Mater. Sci. Technol., 2019, 35: 341
doi: 10.1016/j.jmst.2018.09.039
|
56 |
Li Y Y, Zhang C, Ji H Z, et al. Pt-modification on the thermal cycling behavior of NiCoCrAlYTa coating: a case study [J]. Corros. Sci., 2024, 230: 111934
|
57 |
Zhen H J, Peng X. A new approach to manufacture oxidation-resistant NiCrAl overlay coatings by electrodeposition [J]. Corros. Sci., 2019, 150: 121
|
58 |
Tian L X, Peng X. Research progress of a novel nano-composited MCrAl(Y) coating prepared by electrodepostion [J]. Surf. Technol., 2022, 51(9): 74
|
58 |
田礼熙, 彭 晓. 电沉积新型纳米复合MCrAl(Y)涂层的研究进展 [J]. 表面技术, 2022, 51(9): 74
|
59 |
Jiang S M, Xu C Z, Li H Q, et al. High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating I: microstructure evolution [J]. Corros. Sci., 2010, 52: 1746
|
60 |
Yu D Q, Lu X Y, Ma J, et al. Study of oxidation behavior of the gradient NiCrAlY coating at 1000 and 1100 oC [J]. Acta Metall. Sin., 2012, 48: 759
|
60 |
于大千, 卢旭阳, 马 军 等. 梯度NiCrAlY涂层的1000和1100 ℃氧化行为研究 [J]. 金属学报, 2012, 48: 759
doi: 10.3724/SP.J.1037.2012.00024
|
61 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
62 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375A-377A: 213
|
63 |
Miracle D B, Tsai M H, Senkov O N, et al. Refractory high entropy superalloys (RSAs) [J]. Scr. Mater., 2020, 187: 445
|
64 |
Hsu W L, Tsai C W, Yeh A C, et al. Clarifying the four core effects of high-entropy materials [J]. Nat. Rev. Chem., 2024, 8: 471
|
65 |
Li Y, Shi P J, Wang M Y, et al. Unveiling microstructural origins of the balanced strength-ductility combination in eutectic high-entropy alloys at cryogenic temperatures [J]. Mater. Res. Lett., 2022, 10: 602
|
66 |
Yan X H, Zou Y, Zhang Y. Properties and processing technologies of high-entropy alloys [J]. Mater. Futures, 2022, 1: 022002
|
67 |
Lu J, Chen Y, Zhang H, et al. Effect of Al content on the oxidation behavior of Y/Hf-doped AlCoCrFeNi high-entropy alloy [J]. Corros. Sci., 2020, 170: 108691
|
68 |
Lu J, Ren G L, Chen Y, et al. Unraveling the oxidation mechanism of an AlCoCrFeNi high-entropy alloy at 1100 oC [J]. Corros. Sci., 2022, 209: 110736
|
69 |
Lu J, Zhang H, Li L, et al. Y-Hf co-doped Al1.1CoCr0.8FeNi highentropy alloy with excellent oxidation resistance and nanostructure stability at 1200 oC [J]. Scr. Mater., 2021, 203: 114105
|
70 |
Huang A H, Li L, Liu X Z, et al. Phase transformation-induced TGO rumpling failure of an AlCoCrFeNi high-entropy alloy after isothermal oxidation at 1200 oC [J]. Scr. Mater., 2024, 239: 115817
|
71 |
Lu J, Chen Y, Zhang H, et al. Y/Hf-doped Al0.7CoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance at 1200 oC [J]. Corros. Sci., 2020, 174: 108803
|
72 |
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
|
73 |
Huang L F, Sun Y N, Chen N, et al. Simultaneously enhanced strength-ductility of AlCoCrFeNi2.1 eutectic high-entropy alloy via additive manufacturing [J]. Mater. Sci. Eng., 2022, 830A: 142327
|
74 |
Chanda B, Potnis G, Jana P P, et al. A review on nano-/ultrafine advanced eutectic alloys [J]. J. Alloy. Compd., 2020, 827: 154226
|
75 |
Tiwary C S, Pandey P, Sarkar S, et al. Five decades of research on the development of eutectic as engineering materials [J]. Prog. Mater. Sci., 2022, 123: 100793
|
76 |
Lu J, Zhang H, Li L, et al. Y-Hf co-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation and spallation resistance under thermal cycling conditions at 1100 oC and 1200 oC [J]. Corros. Sci., 2021, 187: 109515
|
77 |
Lu J, Zhang H, Chen Y, et al. Y-doped AlCoCrFeNi2.1 eutectic highentropy alloy with excellent oxidation resistance and structure stability at 1000 oC and 1100 oC [J]. Corros. Sci., 2021, 180: 109191
|
78 |
Lu J, Zhang H, Ren G L, et al. A comparative study on the oxida tion behavior and failure mechanisms of conventional NiCoCrAl alloy and in-situ composite AlCoCrFeNi2.1 eutectic high-entropy alloy at 1300 oC [J]. Composites, 2024, 269B: 111097
|
79 |
Lu J, Chen Y, Li L, et al. An in-situ oxide-dispersion-strengthened AlCoCrFeNiY high-entropy alloy composite coating prepared by AC-HVAF with superior oxidation and spallation resistance [J]. Composites, 2023, 265B: 110933
|
80 |
Lu J, Chen Y, Sun Z H, et al. Air plasma sprayed high-entropy AlCoCrFeNiY coating with excellent oxidation and spallation resistance under cyclic oxidation at 1050-1150 oC [J]. Corros. Sci., 2022, 198: 110151
|
81 |
Ma T, Huang T H, Hua C, et al. Study on gradient structure and interface mechanical properties of n-8YSZ/AlCoCrFeNi high-entropy coatings [J]. Ceram. Int., 2023, 49: 10305
|
82 |
Wang L Q, Zhang F Y, Yan S, et al. Microstructure evolution and mechanical properties of atmosphere plasma sprayed AlCoCrFeNi high-entropy alloy coatings under post-annealing [J]. J. Alloy. Compd., 2021, 872: 159607
|
83 |
Meghwal A, Singh S, Anupam A, et al. Nano- and micro-mechanical properties and corrosion performance of a HVOF sprayed AlCoCrFeNi high-entropy alloy coating [J]. J. Alloy. Compd., 2022, 912: 165000
|
84 |
Zhang X, Zhang H F, Zhang N N, et al. Oxidation behavior of AlCoCrFeNi bond coating in the YSZ-TBCs produced by APS and PS-PVD method [J]. Ceram. Int., 2024, 50: 17190
|
85 |
Ossiansson M, Gupta M, Löbel M, et al. Assessment of CrFeCoNi and AlCrFeCoNi high-entropy alloys as bond coats for thermal barrier coatings [J]. J. Therm. Spray Technol., 2022, 31: 1404
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|