中国腐蚀与防护学报, 2025, 45(2): 283-295 DOI: 10.11902/1005.4537.2024.260

临氢关键材料服役行为研究专刊

掺氢天然气管材及焊缝的氢损伤行为研究进展

白云龙1,2, 冷冰3, 韦博鑫1,2,4, 董立谨5, 于长坤1, 许进1,2, 孙成,1,2

1.中国科学院金属研究所 辽宁沈阳土壤大气环境材料腐蚀国家野外科学观测研究站 沈阳 110016

2.中国科学技术大学材料科学与工程学院 沈阳 110016

3.中国石油辽河油田公司采油工艺研究院 盘锦 110206

4.南洋理工大学机械与航空航天工程学院 新加坡 639798

5.西南石油大学新能源与材料学院 成都 610500

Research Progress on Hydrogen Damage Behavior of Pipeline Steel and Welds for Transportation of Hydrogen-blended Natural Gas

BAI Yunlong1,2, LENG Bing3, WEI Boxin1,2,4, DONG Lijin5, YU Changkun1, XU Jin1,2, SUN Cheng,1,2

1.Liaoning Shenyang Soil and Atmosphere Corrosion of Material National Observation and Research Station, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China

3.Oil Production Technology Research Institute of China Petroleum Liaohe Oilfield Company, Panjin 110206, China

4.School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore

5.School of New Energy and Material, Southwest Petroleum University, Chengdu 610500, China

通讯作者: 孙成,E-mail:chengsun@imr.ac.cn,研究方向为管线钢环境服役损伤机制

收稿日期: 2024-08-18   修回日期: 2024-09-09  

基金资助: 国家自然科学基金.  52301115
国家自然科学基金.  51871228
中国科院金属研究所创新基金.  2023-PY12

Corresponding authors: SUN Cheng, E-mail:chengsun@imr.ac.cn

Received: 2024-08-18   Revised: 2024-09-09  

Fund supported: National Natural Science Foundation of China.  52301115
National Natural Science Foundation of China.  51871228
IMR Innovation Fund.  2023-PY12

作者简介 About authors

白云龙,男,1990年生,博士生

摘要

天然气管道掺氢输送是当前氢能输送最经济有效的方式之一。然而,掺氢管材在临氢环境中服役时,管线内部的氢原子会渗透到管材中。服役过程中的高压氢环境、应力和腐蚀介质等因素也会对管线造成损伤,严重威胁掺氢管线的服役安全。基于上述问题,本文概述了管材与氢的相容性问题,从管材及焊缝组织的氢渗透行为和研究方法入手,分析了氢在管材内的吸附和扩散问题,并从影响因素等方面综述了掺氢管材及焊接组织的氢损伤形式和机理。研究结果可为掺氢天然气管材的选择、设计及安全服役提供理论基础,促进氢能经济的安全发展。

关键词: 掺氢管线 ; 氢促失效 ; 氢渗透 ; 氢致开裂 ; 氢扩散

Abstract

To transfer the blend natural gas with hydrogen through the existing natural gas pipelines is currently one of the most economical and effective ways for hydrogen energy transportation. However, when pipelines in contact with hydrogen-enriched atmospheres, hydrogen atoms can permeate into the pipeline steels inducing hydrogen damages, which can severely threaten the safety of pipelines. Factors such as high-pressure, stress, and corrosive media during service may be involved to the damage of pipelines. Based on these issues, this paper summarizes the compatibility of pipeline steels with hydrogen, analyzes the adsorption and diffusion of hydrogen within the steels from the perspectives of hydrogen permeation behavior and testing methods. Additionally, it summarizes the forms and mechanisms of hydrogen damage in pipeline steels and welds of transportation of hydrogen-blended natural gas, in terms of the relevant influencing factors. The findings may provide a theoretical basis for the selection, design, and safe service of transporting hydrogen-blended natural gas pipelines, promoting the safe development of the hydrogen economy.

Keywords: hydrogen blending pipelines ; hydrogen-induced failure ; hydrogen permeation ; hydrogen induced cracking (HIC) ; hydrogen diffusion

PDF (19965KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

白云龙, 冷冰, 韦博鑫, 董立谨, 于长坤, 许进, 孙成. 掺氢天然气管材及焊缝的氢损伤行为研究进展. 中国腐蚀与防护学报[J], 2025, 45(2): 283-295 DOI:10.11902/1005.4537.2024.260

BAI Yunlong, LENG Bing, WEI Boxin, DONG Lijin, YU Changkun, XU Jin, SUN Cheng. Research Progress on Hydrogen Damage Behavior of Pipeline Steel and Welds for Transportation of Hydrogen-blended Natural Gas. Journal of Chinese Society for Corrosion and Protection[J], 2025, 45(2): 283-295 DOI:10.11902/1005.4537.2024.260

随着全球能源向低碳化、无碳化、低污染的方向发展,氢能的开发和利用备受关注。现如今,氢能被视为综合能源供给系统的重要载体,是经济发展的助推剂,是新兴产业的催化剂,同时也是能源技术变革的方向标。因此,发展氢能有利于推进能源生产和消费革命,这对能源发展有着跨时代的意义[1]

氢能储运是氢能产业链中的最为重要的一环。在现有氢能储运技术中,管道输送是实现长距离输运、氢能大规模利用的重要方式。利用已有天然气管网以掺氢天然气的形式输送氢气最具经济性[2]。美国、欧洲、日本等国现已开展了多个纯氢及天然气管线掺氢示范项目。近年来,我国也相继出台了一系列关于氢能发展规划,制订《能源技术革命创新行动计划》,在“十四五国家重点研发计划氢能专项”中明确指出要大力发展氢气的储运和氢能利用技术等[3]。截至2021年,我国长输天然气管线总里程近11 × 104 km,西气东输二、三线干线均采用高强度管线钢X80进行天然气输送,其中仅X80管线总长就列居世界第一,开展天然气管网掺氢输送可快速实现氢气的长距离输送[4]。一方面,我国纯氢/掺氢管道建设示范项目如火如荼;另一方面,掺氢管道服役安全保障技术需求迫切。将氢气掺入天然气管网进行混输带来一个潜在问题是钢制管道的氢脆。管内部输送介质中的氢分子可以吸附于管道内壁,分解成氢原子后可进入管材内部,导致管线钢发生氢损伤[5~8]。高强度管材由于其特殊组织结构和强化相的分布,在临氢环境中服役时的损伤敏感性要明显高于低强度管材。此外,长输埋地管道的铺设连接主要依靠环焊缝焊接工艺来完成,在焊接热循环过程中管线钢经历着一系列复杂的变化,微观组织及焊接残余应力的不均匀性使得焊缝及热影响区的氢渗透扩散动力学过程发生了变化,焊缝及热影响区易成为地下管线氢脆的薄弱环节。因此,了解并控制管材和焊缝的氢损伤行为,对氢气管道建设、选材及安全维护尤为重要。

本文综述了掺氢天然气与管材及其焊接区的相容性问题,氢渗透过程及研究方法,从氢渗透行为角度分析了氢在管材内的吸附和扩散以及氢原子进入到管材内部引发的多种氢损伤形式,并从影响因素等方面综述了掺氢管材及焊接组织的氢损伤形式和机理。研究结果可为掺氢天然气管材的选择、设计及安全服役提供理论基础,促进氢能经济的安全稳定发展。

1 氢气管道管材相容性研究

目前,虽然天然气管网输送技术已经相对成熟,但在管线中掺入氢气会带来新的技术问题和服役安全问题。掺氢天然气会使管道材料的韧性下降,疲劳裂纹扩展速率加快,氢致开裂的临界门槛应力降低,甚至导致管材力学性能的不可逆劣化[9]。特别是在高压富氢管网中,管材及焊接区域失效风险增大,从而影响输氢管网的服役安全性[10]。因此,开展现役天然气管线材料与掺氢天然气的相容性研究尤为重要。

氢与输氢管材的相容性研究主要针对管线的服役状态,对输氢管材的力学性能进行评估,探究不同掺氢比与输送压力之间的相关性,以分析何种管材能满足不同输氢压力以及掺氢比。近年来,国内外制定了金属材料与氢相容性的相关标准,例如ANSI/CSA HGV 4.10和GB/T 34542.2-2018。这些标准明确指出测试过程均在气相充氢环境中进行,测试方法主要有慢应变速率拉伸(SSRT)试验、疲劳寿命试验、断裂韧度试验和疲劳裂纹扩展速率试验。此外,电化学充氢试验可以加快氢原子渗入管材,在短时间内提高管材的氢浓度,主要用于氢损伤研究[11]。其中,根据服役环境的不同,氢损伤主要分为气态氢损伤和溶液氢损伤。

1.1 气态氢损伤

自20世纪80年代以来,国内外学者对管道内环境氢脆试验开展了相关研究,测试了气态环境内充氢对管材的拉伸性能、断裂韧性以及疲劳裂纹扩展的影响。研究表明,X52、X60、X65和X70管线钢在富氢环境中的断面收缩率和抗拉强度均有所下降,并且随着氢分压的增大,断面收缩率逐渐下降[12,13]。Amaro等[14]在富氢环境中对X52和X100管线钢的疲劳裂纹扩展性能进行了测试,表明疲劳裂纹扩展速率随氢气压力的升高而加快,并基于试验结果建立了疲劳裂纹扩展预测模型。Nanninga等[15]在10 MPa纯氢环境中对不同强度等级的管线钢进行力学性能测试,结果表明X80管线钢韧性下降高达67%,氢脆敏感性随管线钢强度等级提高而显著增加。Lee等[16]对X65管线钢在20 MPa氢气环境中进行原位拉伸试验,相较于空气环境中的抗拉强度下降了3.4%,延伸率下降了4.1%。Meng等[17]在12 MPa压力下测试了不同掺氢比条件对X80管线钢力学性能的影响,结果表明随氢气体积分数增大,X80管线钢的疲劳裂纹扩展速率显著加快。An等[18]研究了X80管线钢在富氢环境中的低周疲劳和疲劳裂纹扩展特性,结果表明随着氢气压力的升高,疲劳裂纹扩展速率明显增加,管道失效周期呈指数下降。Wasim和Djukic[19]从微观尺度探究了氢原子导致金属基材原子结合能下降的机制,还有学者认为在高压富氢环境中,渗入的氢原子可以限制位错和晶格内部金属原子的运动,提高显微弹性模量及显微硬度,导致钢材发生脆性断裂。

1.2 溶液氢损伤

气相充氢试验可以原位模拟金属材料在氢环境中的行为,但在低压条件下,氢原子难以渗入管材内部,预充氢耗时较长。因此,实验室通常采用电化学充氢快速评价氢与管材的相容性。该方法利用电解过程的阴极效应加速氢原子渗入金属内部,使金属材料在短时间内获得较高的氢浓度,再进行力学试验评价氢脆敏感性。电化学充氢试验条件易于控制,操作方便。因此,广泛应用于氢与金属相容性研究[20~22]

封辉和朱兴华[23]探究了不同应力三轴度下电化学充氢对X80管线钢力学性能的影响,结果表明电化学充氢能够降低材料的缺口试样抗拉强度和断面收缩率,随着应力三轴度的增加,缺口位置应力集中程度增加,氢更容易在该处聚集。Li等[24]探究了电化学充氢下温度对管线钢氢扩散和氢脆的影响规律,表明氢扩散系数D与温度T之间遵循Arrhenius方程,随温度的降低D呈现下降的趋势,其对应关系如图1所示。Asadipoor等[25]采用原位、非原位充氢拉伸试验和原位电化学微悬臂弯曲试验(图2b2),对X70管线钢的氢脆进行了宏观和微观尺度的研究,从图2b2中能够明显看出电化学充氢后悬臂根部有明显的裂纹,掺氢条件下的氢脆敏感性远大于未掺氢条件。

图1

图1   氢扩散系数与温度函数关系[24]

Fig.1   Hydrogen diffusivity as a function of the inverse of temperature[24]


对于输氢管道而言,管线钢处于气态氢环境,与电化学渗氢过程有所不同。氢气分子必须先分解成氢原子,才能渗入管线钢,这一过程受氢的溶解平衡控制。当管道压力不高时,根据西弗特定律,钢表面氢的溶解度很低。换言之,管道内表面的氢吸附与脱附平衡,使表面的氢浓度无法达到较高水平。相比之下,电化学“阴极渗氢”可以使氢原子在管道内壁建立高浓度,从而驱动表面氢原子向管线钢内部渗透。因此,电化学渗氢通常是单向的非平衡过程。

2 管材及焊接接头的氢渗透行为

渗入钢中的氢是诱发材料力学性能退化的关键因素之一,氢进入输氢管材及焊接接头内部需要经历一系列过程[26],包括物理吸附、解离、化学吸附和扩散。由于组织不均匀和应力集中等,焊缝区域成为管线钢氢损伤最薄弱的位置[27,28]。因此,研究掺氢天然气管材及焊缝的氢渗透行为及机理尤为关键。当前的研究手段主要集中在实验与模拟计算两方面,为管材和焊缝的氢渗透行为提供了更深入的见解。

2.1 氢渗透试验

张敬强等[29]探究了低碳钢焊接接头的氢吸附和扩散过程。研究表明,母材的稳态扩散电流大于焊缝,而氢扩散系数小于焊缝。Sun和Cheng[30]研究了X80焊接接头在弹性和塑性应力下的氢渗透过程,结果表明塑性变形有利于氢在焊缝的渗透和聚集,尤其是在热影响区,氢和应力的协同作用使得局部区域的氢致开裂敏感性增强。Gou等[31]采用电化学氢渗透测试,研究了不同热输入条件下X80钢的冲击断裂性能(如图3所示)。研究表明,当组织中含有较多的板条状贝氏体(LB)时,粗晶热影响区(CGHAZ)具有更强的抗冲击断裂能力。H原子能够削弱晶界处的Fe-Fe键,导致氢脆。与粒状贝氏体(GB)相比,含LB的微观组织需要更高的H浓度才能导致穿晶脆性断裂。还有研究指出,管线钢焊接接头区域的组织多为针状铁素体,铁素体相互交织形成晶界网络,为氢扩散提供路径,从而导致焊接接头区域相对于母材具有较高的氢渗透速率和表面氢浓度。但在焊接过程中,由于晶粒粗化、夹杂物和渗碳体增多,会阻碍氢扩散,导致焊接组织的氢渗透速率下降。其中,Dong等[32]研究表明,X100母材具有较低的氢陷阱密度,而热影响区(HAZ)则具有较高的氢陷阱密度,HAZ的氢扩散系数和氢渗透速率都低于母材。所以不能单一的去评价焊接区的氢渗透行为,应当找到影响氢渗透行为的主控因素,因此在进行氢渗透行为研究时要对材料的微观组织,晶体结构,力学参数乃至焊接过程中的热值参数都要逐一考虑。

图2

图2   未掺氢和掺氢环境下铁氧体悬臂梁的扫描电镜图像[25]

Fig.2   Selected SEM images of the without hydrogen (a) and hydrogen-charged (b) ferrite cantilevers deformed to 5000 nm displacement; (a2) and (b2) represent cross-sectional images of the marked areas in (a1) and (b1)[25]


图3

图3   氢分子扩散进入板条状贝氏体(LB)和粒状贝氏体(GB)的示意图[31]

Fig.3   Schematic diagram the impact crack propagation in the CGHAZ obtaining mainly LB and GB, respectively, in the absence and presence of H atoms: (a) LB, no H, (b) GB, no H, (c) LB with H, (d) GB with H[31]


2.2 理论模拟计算

创建理论模型进行模拟计算可以有效弥补实验的不足,用以研究管材表面氢的覆盖度、吸附能以及吸附解离过程。主要的模拟计算方法包括分子动力学计算、第一性原理以及有限元模拟等。王春璐等[33]研究了H2在Fe金属(110)面的吸附解离过程,阐述了Fe(110)与氢分子之间的物理吸附关系,并基于密度泛函理论计算出解离后的H原子与铁之间是化学吸附关系,H2到H原子的解离吸附过程如图4所示。研究表明Fe对H2有极高的解离活性,Fe原子通过将外层d轨道的电子填入σ*,能够弱化H-H间的作用强度。Chohan等[34]采用第一性原理,计算了氢原子从吸附到扩散进入γFe(100)、(110)、(111)面的过程(如图5所示),其中(100)表面的势垒为1.4 eV,(110)表面的势垒为1.2 eV,(111)表面的势垒为1.7 eV,这说明(111)表面暴露在含氢环境中,其中奥氏体钢(111)密排面扩散能垒最高,扩散最难。薛景宏等[35]通过建立有限元模型,探究了有无残余应力时管材的氢浓度分布状态(如图6所示)。结果表明,残余应力改变了氢的分布状态,且经过热处理后管材的氢浓度分布与未经热处理时基本一致,但氢浓度值明显降低。张体明等[36]利用ABAQUS软件建立了X80钢螺旋焊管三维模型,并对焊接接头的氢扩散进行数值模拟。结果表明,残余应力和组织不均匀都会导致氢扩散的发生,并且发现残余应力的影响大于组织不均匀性的影响,存在残余应力的焊缝区的氢浓度是比不考虑残余应力时的2.7倍。

图4

图4   H2在Fe金属(110)面吸附解离过程的电子云密度分布变化等势面[33]

Fig.4   Electronic cloud density distribution changes during H2 adsorption and dissociation on the Fe metal (110) surface[33]


图5

图5   氢原子从吸附到扩散进入γFe(111)表面势能变化过程[34]

Fig.5   2D potential energy surface at local minima for hydrogen diffusion through the (111) surface (a), energy profile for hydrogen diffusion through the surface (b), diffusion pathway from the surface through towards the bulk (c), dotted line between stationary points is only a guide to the eye[34]


图6

图6   X80钢管氢浓度分布云图[35]

Fig.6   Cloud maps of hydrogen concentration distribution of the X80 steel pipewithout (a), and with residual stress before heat treatment (b) and after heat treatment (c)[35]


通过实验表征和多种模拟方法对氢在管线钢表面及焊接接头区域的吸附、解离以及扩散过程进行研究,有助于理解氢渗透过程及预防掺氢管材的损伤行为。这些研究不仅为管材在氢环境下的应用提供了理论基础,还为实际工程中的防护措施和材料改进提供了参考。

3 管材及焊接接头氢损伤影响因素

3.1 化学元素

管材及焊接接头中化学元素的差异会显著影响氢致损伤行为。合金化过程中,沉积硬化、固溶强化以及元素偏析均会引起显微组织的变化,进而影响材料的力学性能。在高强度管线钢中,C含量通常控制在0.1%以内。碳的主要作用是稳定力学性能,但随着C含量增加,碳化物含量也随之增加,形成更多氢陷阱,导致氢扩散系数下降和氢溶解度增加[37]。Si含量增加会降低氢在钢中的扩散系数,从而减缓氢致开裂扩展速率。焊接过程中,S和Mn可形成MnS夹杂物,这些夹杂物作为氢陷阱,诱导氢聚集并成为氢致开裂(HIC)形核的位置,因此应避免MnS的形成[38,39]。此外,P的偏析可能导致局部区域的硬化,增加对HIC的敏感性。尽管Cr通常被认为是有害元素,但Cr可以抑制氢致沿晶断裂的发生。而Ni则能促进奥氏体的生成,从而降低HIC敏感性。

3.2 显微组织结构

管线钢及其焊接接头的显微组织主要由铁素体和珠光体构成,这种条状组织结构会影响氢的扩散系数。在热处理过程中,部分铁素体-珠光体微观组织会转变为针状铁素体与贝氏体,从而提高管线钢的强度和韧性,并对氢扩散产生一定影响。氢原子在铁素体中的扩散速率高于奥氏体,而面心立方结构的奥氏体则会阻碍氢的扩散,因而HIC敏感性较低[40]

然而,成片的马氏体组织对氢致开裂的敏感性明显高于其他显微组织。当管材中碳当量较高时,低温相变生成较大的马氏体或魏氏组织,增加了氢陷阱密度,诱导氢的聚集,为氢致裂纹的形成创造了条件,因此氢致开裂敏感性较高[41~43]。此外,当管材和焊接区域中含有较多缺陷、位错密度和M-A岛等硬化组织时,其氢脆敏感性也会显著增加[44]。Momotani等[45]研究了奥氏体晶界,发现氢更容易在奥氏体晶界处聚集,并产生明显的氢致裂纹(如图7)。Tian等[46]的研究显示,充氢过程中大角度晶界比小角度晶界对氢致开裂的敏感性更高,其主要原因是由于原始奥氏体晶界(PAGB)相对于板条界(LB)具有更高的氢结合能和较低的结合强度,因此能迅速达到开裂所需的局部氢浓度。此外,由图8还可见,PAGB捕获的原子更多,自由体积内的氢浓度相对较低,这也反应了大角度晶界氢致开裂敏感性更高。Zhu等[47]采用原子探针显微镜(APT)研究了QP980钢充氢后的元素分布,结果表明氢主要集中在C含量较高的区域,且氢在奥氏体中的质量分数(约3.4 × 10-3%)是马氏体的3倍。张体明等[36]通过高压气相氢渗透实验测定了焊接接头各区的氢扩散参数(如图9),结果显示CGHAZ区域的稳态氢电流密度最大,表明显微组织的差异会显著改变氢扩散参数。显微组织的差异性对于氢渗过程有重要影响,氢原子进入管材后会引发多种形式的氢损伤行为。其中,袁玮等[48]评估了不同显微组织下X100的氢致开裂敏感性,研究表明原始铁素体-贝氏体组织试样HIC敏感性最高(如图10)。

图7

图7   施加300 MPa的拉伸应力和氢微印处理后试样的SEM图像[45]

Fig.7   SEM images (a, b, d, e, g, h) and EBSD orientation maps (c, f, i) of the specimens after applying tensile stress of 300 MPa and hydrogen micro-print treatment[45]


图8

图8   原始奥氏体晶界(PAGB)和板条界(LB)在不同氢通量条件下的氢扩散示意图[46]

Fig.8   PAGB (a, c) and LB (b, d) at low (a, b) and high (c, d) hydrogen flux. (e) illustrates the evolution of hydrogen atom content (e1), hydrogen atom concentration (e2) and GB cohesive strength (e3) with increasing hydrogen flux[46]


图9

图9   X80钢及HAZ各亚区的氢渗透曲线[36]

Fig.9   Hydrogen permeation curves of X80 steel and HAZ subzones[36]


图10

图10   X100管线钢HIC裂纹扩展形貌[48]

Fig.10   SEM images of the propagation path of HIC cracks in X100 pipeline steel: (a) original, (b) furnace cooling, (c) wind cooling[48]


3.3 管线钢强度等级

王万里等[49]探究了X60和X70管线钢母材及焊接组织的氢损伤敏感性。研究表明,X60和X70管线钢断口均显示出明显的剪切韧窝,但在其焊接接头热影响区可见一定深度的氢脆区。此外,强度等级更高的X70焊接接头氢脆区出现了明显的准解理断裂形貌。李玉星等[50]以X52和X80钢为试验对象,分析了氢分压对材料屈服强度、抗拉强度、断面收缩率及氢脆指数的影响。研究表明,X52和X80钢的塑性逐渐下降,但强度等级更高的X80钢氢脆程度更为明显。王涛和王荣[21]采用电化学充氢方式研究了X70和X80钢中的氢扩散行为,发现充氢电流密度的平方根与表观氢浓度呈线性关系,并且强度等级更高的X80钢表观氢浓度高于X70钢。主要原因是高强度管线钢中晶界处往往会存在应力集中或缺陷,这些缺陷有助于氢原子的聚集,这使得强度等级较高的管线钢HIC敏感性更高。

3.4 应力

在采用天然气管网进行输氢时,管材一般会受到残余应力和拘束应力的影响。残余应力主要来源于焊接冷却收缩过程中低温区金属的约束力及局部组织相结构的转变。焊接组织的残余应力通常大于母材本身,在应力作用下氢容易在此聚集,特别是在热影响区(HAZ),该区域极易发生氢致损伤行为。此外,管材在服役过程中还会受到外部拘束应力(弹性应力和塑性应力)的影响。弹性应力作用下,晶格大小发生改变,原子间空隙增大,导致氢渗透电流密度增加。塑性应力则通过改变位错密度来影响氢渗透行为和氢脆敏感性[51]。在塑性应力的初始阶段,由于拘束应力的存在,材料会出现大量位错和不可逆氢陷阱,氢被捕获,导致渗透电流密度下降;随着塑性应力的增大,渗入金属内部的氢与位错交互作用,形成氢原子气团进入氢扩散通道,氢渗透电流密度开始增加。当氢陷阱中捕获的氢和位错中扩散的氢达到平衡时,测得的渗氢电流处于稳定状态[52,53]

Birnbaum和Sofronis[54]探究了塑性条件下的氢扩散行为,表明由于应力集中形成大量位错,位错与氢一起运动,塑性应力会增强了氢促失效过程。而张统一等[55]认为,位错既可作为氢陷阱捕获氢原子而降低氢的渗透,又能降低扩散能垒,促进氢原子的扩散,且运动的位错可以作为氢扩散载体,即应力对氢渗透的影响具有两面性。Park等[56]以EH36钢为基础,预变形后进行电化学氢渗透研究,表明20%应变时,扩散系数是原来的十分之一,氢含量上升3倍。Sun和Cheng[30]对X80钢母材及热影响区在弹性应力和塑性应力下进行了电化学氢渗透试验,发现施加弹性应力时,氢渗透速率增加;施加塑性应力时,氢捕获密度增加,导致氢扩散速率下降。

由上述文献可以看出,应力和应变对氢渗透的影响主要来源于应力引起的位错。位错既是氢的扩散通道,又可以作为氢原子的捕获陷阱。蒋文春等[57]通过有限元模拟研究了焊接残余应力对氢扩散的影响,结果表明焊接残余应力的存在促进了氢的扩散和聚集,使材料性能下降,氢致开裂敏感性提高。焊接后采用热处理消除应力,可以显著降低表面氢浓度,从而大幅降低材料在临氢环境中开裂的风险。刘韦辰等[58]的有限元模拟结果表明,外加应力可以驱动管道内氢原子的扩散,导致氢原子在应力集中的腐蚀缺陷底部聚集。

3.5 环境影响因素

内部环境中,氢分压相对较高的富氢环境对管材的氢脆敏感性影响严重。大量研究表明,随氢分压的增加,氢渗透行为及氢脆敏感性均有所增加,且焊接组织的敏感性远高于母材[59]。外部环境因素主要包括杂散电流的干扰和阴极保护。尤其是长输天然气管材施加的阴极保护电位一旦超过析氢电位,会导致外部阴保电位的负向移动,析氢电流密度增加,扩散到钢材内部的氢浓度也会增加,从而影响材料的氢损伤程度[60]。内部环境包括CO2、CO、H2S和有机酸等杂质组分,这些组分在钢表面与氢气存在竞争吸附。随着管材及焊接区域氢原子的聚集,在应力、氢以及阳极溶解的三者交互作用下,进一步加速氢损伤行为的发展。

综上所述,环境中的氢原子解离和析出、氢环境、阴极保护及杂散电流等因素均对管材的氢致损伤行为有显著影响。理解和控制这些环境影响因素,对于提升管材在氢气环境中的耐氢脆性能具有重要意义。

4 氢损伤机制的多种解释

目前存在多种机制来解释氢损伤现象,主要包括氢压理论(IHP)、氢促进局部塑性变形理论(HELP)、吸附氢致位错发射机理(AIDE)、氢降低原子间结合力理论(HEDE)等[61]。由于各种机制均存在一定的局限性,因此在阐述氢致失效过程中,往往需要多种机制相互补充来解释氢促失效的复杂过程。

4.1 IHP

IHP指出,金属材料在阴极充氢(如酸洗、电镀或电解充氢)或硫化氢环境中服役时,大量的氢原子渗入材料内部,并在材料缺陷处富集[62]。缺陷捕获的氢原子在热力学转变下复合成氢分子,同时产生内应力,进一步促进裂纹的萌生和扩展。Chu等[63]通过透射电镜(TEM)对预充氢钢试样进行观察,证明了氢由于在材料缺陷处富集导致的氢鼓泡现象。Xie等[64]采用原位TEM对氢环境下铝金属/氧化物界面中的纳米级气泡进行研究,同样也证明了氢在氧化物界面处的富集以及内应力的产生。上述研究均为IHP理论提供了有力的证据。IHP机制主要说明缺陷处聚集的氢分压是导致氢鼓泡及氢致裂纹的主要原因,但无法解释材料在受力时发生的延迟断裂和塑性损失现象。

4.2 HELP

为了弥补IHP机制的不足,Beachem[65]提出了HELP。该理论认为,氢进入材料后,在裂纹尖端大量富集,导致尖端氢浓度升高,促使位错运动加剧,最终导致局部塑性变形。Ferreira等[66]采用原位透射电镜拉伸研究了310S和高纯铝在不同氢分压条件下位错滑移现象,该研究证明了施加载荷的样品在引入氢后会促进位错运动加剧。Huang等[67]通过自主设计开发定量原位瞬变电磁法力学测试工具,定量的揭示了氢对位错运动的影响。研究表明在2 Pa电子束激发的H2气氛中引发位错投影滑动距离大于真空环境7.0 nm,位错运动的临界应力比在真空环境中低27%~43%(图11de)。此外,该研究还表明循环加载和卸载可以提高氢的脱陷,使得位错恢复其无氢行为。此项研究为HELP机制提供了核心证据。HELP机制强调了氢对力学性能的改变,弥补了IHP机制在解释塑性损失方面的不足。

图11

图11   氢化对螺位错弓出运动的影响[64]

Fig.11   Bright-field transmission electron microscope image showing the pillar after a series of cyclic compression loading and unloading sessions (a), configurations of dislocation 1 at σmax in vacuum (N = 1) and in 2 Pa H2 (N = 2) (b), the loading engineering stress σ and the digitally tracked projected glide distance σ of dislocation 1 in a typical load cycle are shown as a function of time (c), the measured σmax and σc of dislocation 1 as a function of loading cycle number in vacuum (d) and in 2 Pa H2 (e)[64]


4.3 AIDE

AIDE进一步扩充了HELP机制。该机制认为,吸附氢对位错的形核和运动起决定作用。在持续应力或交变应力作用下,材料裂纹尖端形成微孔和位错发射,共同促进裂纹的扩展。氢扩散到裂纹尖端或微孔并被捕获是该机制应用的前提。AIDE能解释位错从裂纹尖端形成的过程,而HELP则表明位错离开裂纹尖端的过程,两者相辅相成,互为补充。

4.4 HEDE

HEDE从键能角度分析氢损伤现象。HEDE的成立前提有两个:第一,氢原子在裂纹尖端处聚集,降低原子间的结合力;第二,原子之间受正应力拉断,导致裂纹的萌生和扩展,没有涉及塑性变形的影响。Djukic等[68]指出,HEDE与HELP的交互作用能更有效地解释氢致失效过程。Xue等[69]采用电化学充氢试验以及慢应变速率拉伸试验探究了氢原子对QP980激光焊接接头氢脆断裂机理。研究表明接头试样充氢后,断裂位置由母材区转移到不完全相变区,氢致裂纹主要由马氏体延晶扩展变为马氏体穿晶扩展和少量沿马氏体与铁素体界面沿晶扩展。这主要由于马氏体与铁素体变形不协调导致二者晶界处出现应变集中,进而出现氢原子偏聚现象。这种氢原子偏聚和位错的聚集促使二者晶界产生剧烈的塑性变形,并减弱界面原子间结合力,进而导致断裂位置和裂纹扩展路径的改变。此外,也有学者认为当掺氢管材在较小的拘束应力条件下服役时,HIC机制被认为是HELP诱发HEDE,但随着拘束力的提高,HEDE将成为主导机制。材料在发生氢损伤过程中的机制错综复杂,单一机制难以全面揭示氢损伤原理。因此,在开展相关研究时,需要根据实际服役环境结合宏观力学和微观表征相结合,综合运用多种机制,准确阐述氢损伤机制。

5 结论与建议

在过去数十年中,人们对长输管材及其焊接区域的氢促失效进行了广泛研究。这些研究涵盖了管材与氢气相容性、从原子氢到管材的吸附和扩散行为、氢渗透行为、微观组织和力学性能等多个方面,取得了大量的研究成果。例如,测试方法的改进、氢表征手段的革新,以及先进理论模型和机制的提出,都极大地丰富了我们对氢损伤现象的认知。

然而,目前对氢损伤行为的相应标准并未给出准确依据,特别是在同一体系下的氢促失效研究中,往往出现相互矛盾的结果。这些矛盾反映出不同机制之间的冲突和解释的不一致性。因此,亟需建立新的标准评价体系,以统一管线钢材料的氢致失效问题的评估标准。这将有助于减少不同实验和研究之间的结果差异,提高研究的可比性和可重复性。

此外,对氢与管材的相容性分析仍存在一些挑战。例如,同种材料在气态充氢和电化学充氢条件下的行为差异显著。电化学充氢通常会过度放大氢对管材的危害,而气态充氢过程则过于漫长,导致实际应用中的效能不足。因此,需要一种高效的机制将这两种方法合理关联,以更准确地模拟和评估实际应用中的氢损伤行为。

微观结构和金相组织对氢渗透过程的定量化研究也面临困难。虽然有限元方法和第一性原理计算可用于模拟氢在管材中的分布情况,但在复杂的实际环境中,多因素(如腐蚀、应力应变、富氢环境等)条件下,缺乏相应的参数进行修正。因此,需要进一步发展精确的模拟方法和参数校准技术,以便在复杂环境中更准确地预测和评估氢损伤行为。

为了应对上述挑战,未来的研究应关注以下几个方向:

标准化评价体系的建立:开发统一的评价标准和测试方法,以减少不同研究之间的结果差异,提高研究的可比性和可靠性。这将有助于建立一致的材料选择和评估标准,指导实际工程应用。

多尺度模拟和实验研究:结合多尺度模拟技术和实验研究,深入理解氢在管材中的渗透和扩散机制。利用先进的计算方法(如第一性原理计算和有限元分析)与实验数据相结合,建立更准确的氢损伤预测模型。

复杂环境条件下的研究:开展在实际服役环境下的氢损伤研究,包括腐蚀、应力应变、富氢环境等多因素条件的综合影响。通过现场测试和模拟实验,获得更接近实际应用的氢损伤行为数据。

材料设计和优化:基于氢损伤机制的深入理解,设计和开发具有高抗氢脆性能的新型管材和焊接材料。优化材料成分和显微结构,提高材料在复杂环境中的服役性能。

通过在以上几个方向的持续研究,将有望解决当前氢损伤研究中的关键问题,推动长输管材及其焊接区域在氢气环境下的安全应用。这不仅对能源输送和储存技术的发展具有重要意义,也将为氢能源产业的可持续发展提供有力支持。

参考文献

Qiu Y, Zhou S Y, Gu W, et al.

Application prospect analysis of hydrogen enriched compressed natural gas technologies under the target of carbon emission peak and carbon neutrality

[J]. Proc. CSEE, 2022, 42: 1301

[本文引用: 1]

邱 玥, 周苏洋, 顾 伟 . “

碳达峰、碳中和”目标下混氢天然气技术应用前景分析

[J]. 中国电机工程学报, 2022, 42: 1301

[本文引用: 1]

Yang C, Ogden J.

Determining the lowest-cost hydrogen delivery mode

[J]. Int. J. Hydrog. Energy, 2007, 32(2): 268

[本文引用: 1]

Miao A K, Yuan Y, Wu H, et al.

Research on development status and trend of green hydrogen energy technologies under targets of carbon peak and carbon neutrality

[J]. Distributed Energy, 2021, 6(4): 15

[本文引用: 1]

苗安康, 袁 越, 吴 涵 .

“双碳”目标下绿色氢能技术发展现状与趋势研究

[J]. 分布式能源, 2021, 6(4): 15

[本文引用: 1]

Li H Y, Li J L, Lin M Z, et al.

Analysis on world energy supply & demand in 2020 under the background of "carbon neutrality"

[J]. Nat. Gas Oil, 2021, 39(6): 132

[本文引用: 1]

李洪言, 李家龙, 林名桢 . "

碳中和"背景下2020年全球能源供需分析

[J]. 天然气与石油, 2021, 39(6): 132

[本文引用: 1]

Li X C, Li Z N, Wang H F, et al.

Hydrogen embrittlement sensitivity for welded structural parts of DH36 marine engineering steel

[J]. J. Chin. Soc. Corros. Prot., 2025, 45: 416

[本文引用: 1]

李新城, 李兆南, 王海锋 .

DH36海洋工程钢焊接结构的氢脆敏感性研究

[J]. 中国腐蚀与防护学报, 2025, 45: 416

[本文引用: 1]

Zhou Y, Zhang H B, Du M, et al.

Effect of cathodic potentials on hydrogen embrittlement of 1000 MPa grade high strength steel in simulated deep-sea environment

[J]. J. Chin. Soc. Corros. Prot., 2020, 40: 409

周 宇, 张海兵, 杜 敏 .

模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响

[J]. 中国腐蚀与防护学报, 2020, 40: 409

Zhang T M, Zhao W M, Guo W, et al.

Susceptibility to hydrogen embrittlement of X65 steel under cathodic protection in artificial sea water

[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 315

张体明, 赵卫民, 郭 望 .

阴极保护下X65钢在模拟海水中的氢脆敏感性研究

[J]. 中国腐蚀与防护学报, 2014, 34: 315

DOI     

采用阴极极化条件下的氢渗透实验和慢应变速率拉伸实验研究了X65钢在模拟海水中的氢渗透行为及其对断裂机理的影响。氢渗透实验结果表明,阴极极化过程中试样表面的钙镁沉积层能显著地降低氢扩散系数,采用Fourier方程、Laplace方程以及时间滞后法计算得出的有效氢扩散系数平均值为1.49×10<sup>-</sup><sup>7</sup> cm<sup>2</sup>s<sup>-</sup><sup>1</sup>。结合变电位极化氢渗透测试结果、拉伸试样断口分析以及极化曲线测试,对阴极极化条件下X65钢的氢脆敏感性进行评估。结果显示,随着极化电位的降低,X65钢中的吸附氢浓度呈指数规律上升。当极化电位较高时,X65钢的裂纹扩展受阳极溶解和阴极析氢的双重作用控制。当极化电位较低,如-1200 mV时,钢中的吸附氢浓度急剧增加,脆性断裂区域的比例上升,X65钢发生氢致脆化失效。

Wen L J, Gao Z M, Liu Y Y, et al.

Effects of applied cathodic potential on susceptibility to hydrogen embrittlement and mechanical properties of Q235 steel

[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 271

[本文引用: 1]

文丽娟, 高志明, 刘洋洋 .

阴极保护电位对Q235钢氢脆敏感性和力学性能的影响

[J]. 中国腐蚀与防护学报, 2013, 33: 271

[本文引用: 1]

利用拉伸实验和显微硬度测试等方法研究了不同阴极保护电位对Q235钢在3.5%NaCl溶液中氢脆敏感性的影响,并用SEM对断口形貌进行分析。结果表明,随着阴极保护电位的负移,Q235钢的最大抗拉强度和屈服强度没有呈现规律性变化,但断面收缩率减小,材料发生氢脆的可能性加大。当施加电位为-1100 mV时,断口出现准解理断裂特征形貌。

Haeseldonckx D, D'haeseleer W.

The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure

[J]. Int. J. Hydrog. Energy, 2007, 32: 1381

[本文引用: 1]

Li X F, Ma X F, Zhang J, et al.

Review of hydrogen embrittlement in metals: hydrogen diffusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention

[J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 759

[本文引用: 1]

Zhou X, Wu D K, Cheng X, et al.

Research progress of detection techniques for permeated hydrogen

[J]. J. Chin. Soc. Corr. Prot., 2023, 43: 1203

DOI      [本文引用: 1]

In order to achieve the goals of the “peak carbon dioxide emission and carbon neutrality”, it is essential to develop hydrogen energy. During the production, transportation, storage and use of hydrogen, hydrogen permeation is easy to occur and causes hydrogen damage to metal materials, which not only shortens the service life of pipelines and equipment, but also brings serious potential safety hazards. So it is of great significance to promote the development of permeated hydrogen detection techniques. Permeated hydrogen testing technology can be divided into indoor- and field-permeated hydrogen testing techniques. The indoor permeated hydrogen testing techniques include current method, hot/melt extraction, thermal desorption spectroscopy (TDS), hydrogen micro-contact printing (HMP), scanning Kelvin probe force microscopy (SKPFM), secondary ion mass spectroscopy (SIMS), atom probe tomography (APT) and neutron radiography (NRG). The field permeated hydrogen testing techniques include hydrogenochromic method, hydrogen flux method, hydrogen probe method, hydrogen sensor, as well as field Kelvin probe (FKP) technique. For the indoor testing, the principles and characteristics of several detection techniques were summarized and applicable scope was also introduced. The current method, hot/melt extraction and TDS are used to measure the average hydrogen concentration in materials, but none of the above methods have the ability of spatial resolution. The silver particles produced by the substitution reaction between Ag+ and H by HMP reflect the distribution and diffusion path of hydrogen, but it is not certain whether Fe participates in that. By continuously detecting the potential of a certain position, SKPFM can reveal the hydrogen enrichment and the dynamic process of diffusion in a specific position. However, when current/potential is applied on the sample surface, it will disturb the test results. Both SIMS and APT technology rely on mass spectrometry, and have spatial resolution but their measuring chamber need to be filled with deuterium to eliminate the influence of background hydrogen. NRG can judge the concentration and distribution of hydrogen by detecting the hydrogen intensity and bright area, but its spatial resolution can only reach micron level. For the field testing, the parameters of several testing equipment provided on the market are investigated in this article, while the principle, application scope, advantages and disadvantages of each method are also summarized. Finally, some suggestions are put forward for the future development of hydrogen permeation detection methods.

周 欣, 吴大康, 成 旭 .

渗透氢检测方法研究进展

[J]. 中国腐蚀与防护学报, 2023, 43: 1203

[本文引用: 1]

Liu F, Yang H W, Deng F J.

Research on hydrogen embrittlement behavior of X52 pipeline steel for hydrogen doped natural gas transportation

[J]. Petro. New Energy, 2024, 36(03): 30

[本文引用: 1]

刘 方, 杨宏伟, 邓付洁.

掺氢天然气输送用X52管线钢的氢脆行为研究

[J]. 油气与新能源, 2024, 36(03): 30

[本文引用: 1]

Aucouturier M.

Current solutions to hydrogen problems in steels

[J]. Int. J. Hydrog. Energy, 1982, 7: 687

[本文引用: 1]

Amaro R L, Drexler E S, Slifka A J.

Fatigue crack growth modeling of pipeline steels in high pressure gaseous hydrogen

[J]. Int. J. Fatigue, 2014, 62: 249

[本文引用: 1]

Nanninga N E, Levy Y S, Drexler E S, et al.

Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments

[J]. Corros. Sci., 2012, 59: 1

[本文引用: 1]

Lee Y H, Lee H M, Kim Y I, et al.

Mechanical degradation of API X65 pipeline steel by exposure to hydrogen gas

[J]. Met. Mater. Int., 2011, 17: 389

[本文引用: 1]

Meng B, Gu C H, Zhang L, et al.

Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures

[J]. Int. J. Hydrog. Energy, 2017, 42: 7404

[本文引用: 1]

An T, Peng H T, Bai P P, et al.

Influence of hydrogen pressure on fatigue properties of X80 pipeline steel

[J]. Int. J. Hydrog. Energy, 2017, 42: 15669

[本文引用: 1]

Wasim M, Djukic M B.

Hydrogen embrittlement of low carbon structural steel at macro-, micro- and nano-levels

[J]. Int. J. Hydrog. Energy, 2020, 45: 2145

[本文引用: 1]

Zhao Y, Wang R.

An investigation on mechanical behaviors of pipeline steel X70 after electrochemical hydrogen charging

[J]. J. Chin. Soc. Corros. Prot., 2004, 24: 293

[本文引用: 1]

赵 颖, 王 荣.

X70管线钢电化学充氢后的力学行为研究

[J]. 中国腐蚀与防护学报, 2004, 24: 293

[本文引用: 1]

Wang T, Wang R.

Electrochemical hydrogen charging behaviors of high strength pipeline steels

[J]. Corros. Prot., 2010, 31: 450

[本文引用: 1]

王 涛, 王 荣.

高强度管线钢电化学充氢行为

[J]. 腐蚀与防护, 2010, 31: 450

[本文引用: 1]

Akiyama E, Li S J.

Electrochemical hydrogen permeation tests under galvanostatic hydrogen charging conditions conventionally used for hydrogen embrittlement study

[J]. Corros. Rev., 2016, 34: 103

[本文引用: 1]

Feng H, Zhu X H.

Effect of electrochemical hydrogen charging on properties of X80 pipeline steel under different stress triaxialities

[J]. Welded Pipe Tube, 2023, 46(9): 9

[本文引用: 1]

封 辉, 朱兴华.

不同应力三轴度下电化学充氢对X80管线钢性能影响

[J]. 焊管, 2023, 46(9): 9

[本文引用: 1]

Li J Q, Wu Z Y, Zhu L J, et al.

Investigations of temperature effects on hydrogen diffusion and hydrogen embrittlement of X80 pipeline steel under electrochemical hydrogen charging environment

[J]. Corros. Sci., 2023, 223: 111460

[本文引用: 3]

Asadipoor M, Pourkamali Anaraki A, Kadkhodapour J, et al.

Macro- and microscale investigations of hydrogen embrittlement in X70 pipeline steel by in-situ and ex-situ hydrogen charging tensile tests and in-situ electrochemical micro-cantilever bending test

[J]. Mater. Sci. Eng., 2020, 772A: 138762

[本文引用: 3]

Li S Y.

Study on hydrogen adsorption/diffusion mechanism and control of X80 steel hydrogen pipeline

[D]. Qingdao: China University of Petroleum (East China), 2020

[本文引用: 1]

李守英.

临氢管线X80钢氢吸附扩散机理及控制研究

[D]. 青岛: 中国石油大学(华东), 2020

[本文引用: 1]

Devanathan M A V, Stachurski Z.

The adsorption and diffusion of electrolytic hydrogen in palladium

[J]. Proc. R. Soc. Lond. Ser., 1962, 270A: 90

[本文引用: 1]

Johnson E W, Hill M L.

The diffusivity of hydrogen in alpha iron

[J]. Trans. Am. Inst. Min. Metall. Eng., 1960, 218: 1104

[本文引用: 1]

Zhang J Q, Fu L, Wang J J, et al.

Hydrogen permeation and hydrogen damage behavior of low carbon steel welded joint

[J]. Trans. China Welding Inst., 2014, 35(9): 23

[本文引用: 1]

张敬强, 付 雷, 王佳杰 .

低碳钢焊接接头氢渗透与氢损伤行为分析

[J] 焊接学报, 2014, 35(9): 23

[本文引用: 1]

Sun Y H, Cheng Y F.

Hydrogen permeation and distribution at a high-strength X80 steel weld under stressing conditions and the implication on pipeline failure

[J]. Int. J. Hydrog. Energy, 2021, 46: 23100

[本文引用: 2]

Gou J X, Xing X, Cui G, et al.

Effect of hydrogen on impact fracture of X80 steel weld: various heat inputs and coarse grain heat-affected zone

[J]. Mater. Sci. Eng., 2023, 886A: 145673

[本文引用: 3]

Dong C F, Liu Z Y, Li X G, et al.

Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking

[J]. Int. J. Hydrog. Energy, 2009, 34: 9879

[本文引用: 1]

Wang C L, Xie Z Z, Zhao Y, et al.

Simulation study on adsorption and dissociation of hydrogen on iron, platinum and nikel metals

[J]. Petrol. Proc. Petrochem., 2019, 50(2): 50

[本文引用: 3]

王春璐, 解增忠, 赵 毅 .

H2在Fe, Pt, Ni表面解离的模拟研究

[J]. 石油炼制与化工, 2019, 50(2): 50

[本文引用: 3]

Chohan U K, Koehler S P K, Jimenez-Melero E.

Diffusion of hydrogen into and through γ-iron by density functional theory

[J]. Surf. Sci., 2018, 672-673: 56

[本文引用: 3]

Xue J H, Bai C X.

Numerical simulation of hydrogen enrichment induced by welding and heat treatment for X80 steel pipe

[J]. Heat Treat. Met., 2023, 48(10): 285

[本文引用: 3]

薛景宏, 白晨旭.

X80钢管道焊接致氢富集及热处理数值模拟

[J]. 金属热处理, 2023, 48(10): 285

[本文引用: 3]

Zhang T M, Zhao W M, Jiang W, et al.

Numerical simulation of hydrogen diffusion in X80 welded joint under the combined effect of residual stress and microstructure inhomogeneity

[J]. Acta Metall. Sin., 2019, 55: 258

DOI      [本文引用: 4]

Welded joints of hydrogen-containing coal gas transmission pipelines are prone to hydrogen enrichment due to their severe microstructure inhomogeneity and residual stress in them, and thus lead to the decrease of plasticity and toughness. In order to investigate the effect of local hydrogen enrichment on the safety of hydrogen-containing coal gas transport pipelines, a three dimensional numerical simulation model was established to investigate the hydrogen diffusion behaviour considering the combined effect of microstructure inhomogeneity and residual stress in X80 spiral welded pipeline by using ABAQUS software. Results showed that both microstructure inhomogeneity and residual stress could lead to hydrogen diffusion. The distribution of hydrogen concentration in the pipeline was similar to that of hydrostatic stress distribution. That is, the higher the hydrostatic stress value, the higher the corresponding hydrogen concentration, indicating that the influence of residual stress on the hydrogen diffusion behaviour is greater than that of microstructure inhomogeneity. The enriched hydrogen concentration at the center region of the welded joint with the highest residual stress was 2.7 times higher than that without considering residual stress. Equivalent charging hydrogen pressure was put forward to reflect the degree of hydrogen enrichment in weld metal. Slow strain rate tension (SSRT) tests were subsequently performed on weld metal specimen at equivalent charging hydrogen pressure to investigate the effect of hydrogen enrichment on hydrogen embrittlement (HE) susceptibility. The SSRT tests performed in nitrogen gas and simulated coal gas were used for comparison. The HE index increased from 18.56% in simulated coal gas to 32.53% in equivalent charging hydrogen pressure, increasing by 75.27%. Therefore, the residual stress is a non-ignorable factor, because it could lead to hydrogen enrichment and could significantly influence HE susceptibility in welded joint. The determination of hydrogen enrichment in welded joint by using numerical simulation method is the basis to evaluate the safety of coal gas transmission pipeline.

张体明, 赵卫民, 蒋 伟 .

X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟

[J]. 金属学报, 2019, 55: 258

DOI      [本文引用: 4]

采用ABAQUS软件建立了煤制气管线X80钢螺旋焊管三维模型,综合考虑焊接残余应力和组织不均匀性的影响,进行了焊接接头氢扩散的数值模拟。结果表明,残余应力和组织不均匀都会导致氢扩散的发生,氢浓度的分布规律与静水应力分布特征相似,即静水应力越高的区域,相应的氢浓度也较高,说明残余应力的影响大于组织不均匀性的影响。氢浓度最高的焊缝区比不考虑残余应力时提高了2.7倍,通过等效充氢压力下的慢应变速率拉伸实验发现,氢脆系数由不考虑残余应力时的18.56%上升至考虑残余应力所致氢富集条件下的32.53%,增加幅度达到75.27%。因此,残余应力是导致焊接接头氢富集进而影响氢脆失效的重要因素,采用数值模拟方法确定氢富集程度则是评估煤制气管线焊接接头安全性的重要基础。

Ba L Z, Li C N, Feng Z L, et al.

Effects of alloying elements on the microstructure and properties of X80 pipeline steel deposited metal

[J]. J. Tianjin Univ. (Sci. Technol.), 2023, 56: 1187

[本文引用: 1]

巴凌志, 利成宁, 冯兆龙 .

合金元素对X80管线钢熔敷金属组织和性能的影响

[J] 天津大学学报(自然科学与工程技术版), 2023, 56: 1187

[本文引用: 1]

Lee S G, Lee D H, Sohn S S, et al.

Effects of Ni and Mn addition on critical crack tip opening displacement (CTOD) of weld-simulated heat-affected zones of three high-strength low-alloy (HSLA) steels

[J]. Mater. Sci. Eng., 2017, 697A: 55

[本文引用: 1]

Niu H, Li B, Liu B, et al.

Effect of MnS inclusion and hydrogen partial pressure coupling on hydrogen embrittlement sensitivity of X80 pipeline steel

[J]. Welded Pipe Tube, 2023, 46(10): 1

[本文引用: 1]

牛 辉, 李 拔, 刘 斌 .

MnS夹杂和氢分压耦合作用对X80管线钢氢脆敏感性影响研究

[J]. 焊管, 2023, 46(10): 1

[本文引用: 1]

Turk A, Pu S D, Bombač D, et al.

Quantification of hydrogen trapping in multiphase steels: part II-effect of austenite morphology

[J]. Acta Mater., 2020, 197: 253

[本文引用: 1]

Wen C J, Ho C, Boukamp B A, et al.

Use of electrochemical methods to determine chemical-diffusion coefficients in alloys: application to 'LiAI'

[J]. Int. Met. Rev., 1981, 26: 253

[本文引用: 1]

Chen C, Wang Y, Zhang Y C, et al.

Study of hydrogen-induced delayed cracking in welding

[J]. J. Shanghai Jiaotong Univ., 1984, 18(3): 51

陈 楚, 王 锬, 张月嫦 .

焊接氢致延迟裂纹的研究

[J]. 上海交通大学学报, 1984, 18(3): 51

Yao X J, Wang J Q, Zuo J H, et al.

Microstructure effects on corrosion and cracking behavior of X52 pipeline steel in H2S environment

[J]. J. Chin. Soc. Corros. Prot., 2012, 32: 95

[本文引用: 1]

姚学军, 王俭秋, 左景辉 .

微观组织对X52钢抗H2S腐蚀和开裂性能的影响

[J]. 中国腐蚀与防护学报, 2012, 32: 95

[本文引用: 1]

通过对X52钢进行热处理获得三种不同组织。SEM观察发现三种组织分别为铁素体/带状珠光体、马氏体/贝氏体和针状铁素体/回火马氏体。通过动电位极化、线性极化电阻、氢致开裂(HIC)实验和硫化物应力腐蚀开裂(SSC)实验,研究了不同热处理对X52钢在H<sub>2</sub>S环境中的腐蚀与开裂行为的影响。结果表明马氏体/贝氏体显微组织由于位错密度很高且脆性大,因而腐蚀速率及HIC和SSC敏感性很高。铁素体/带状珠光体组织和针状铁素体/回火马氏体组织腐蚀速率及HIC和SSC敏感性很低。针状铁素体/回火马氏体组织由于不含带状组织且晶粒细小以及碳化物的析出,因此其HIC和SSC抗性优于铁素体/带状珠光体组织。

Lee S J, Ronevich J A, Krauss G, et al.

Hydrogen embrittlement of hardened low-carbon sheet steel

[J]. ISIJ Int., 2010, 50: 294

[本文引用: 1]

Momotani Y, Shibata A, Yonemura T, et al.

Effect of initial dislocation density on hydrogen accumulation behavior in martensitic steel

[J] Scr. Mater., 2020, 178: 318

[本文引用: 3]

Tian H Y, Xin J C, Li Y, et al.

Combined effect of cathodic potential and sulfur species on calcareous deposition, hydrogen permeation, and hydrogen embrittlement of a low carbon bainite steel in artificial seawater

[J]. Corros. Sci., 2019, 158: 108089

[本文引用: 3]

Zhu X, Li W, Zhao H S, et al.

Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching & partitioning (Q&P) treated steel

[J]. Int. J. Hydrog. Energy, 2014, 39(24): 13031

[本文引用: 1]

Yuan W, Huang F, Gan L J, et al.

Effect of microstructure on hydrogen induced cracking and hydrogen trapping behavior of X100 pipeline steel

[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 536

[本文引用: 3]

袁 玮, 黄 峰, 甘丽君 .

显微组织对X100管线钢氢致开裂及氢捕获行为影响

[J]. 中国腐蚀与防护学报, 2019, 39: 536

[本文引用: 3]

Wang W L, Chen Y, Zhan X Q, et al.

Comparative study on hydrogen embrittlement susceptibility of X60 and X70 pipeline steels and their welded joints

[J]. Surf. Technol., 2024, 53(4): 117

[本文引用: 1]

王万里, 陈 烨, 占先强 .

X60、X70管线钢及其焊接接头氢脆敏感性的对比研究

[J]. 表面技术, 2024, 53(4): 117

[本文引用: 1]

Li Y X, Zhang R, Liu C W, et al.

Hydrogen embrittlement behavior of typical hydrogen-blended natural gas pipeline steel

[J]. Oil Gas Storage Transp., 2022, 41: 732

[本文引用: 1]

李玉星, 张 睿, 刘翠伟 .

掺氢天然气管道典型管线钢氢脆行为

[J] 油气储运, 2022, 41: 732

[本文引用: 1]

Zhao Y J.

Influence of plastic strain on hydrogen permeation behavior and hydrogen embrittlement susceptibility of X80 pipeline steel

[D]. Qingdao: China University of Petroleum (East China), 2018

[本文引用: 1]

赵玉娇.

塑性应变对X80临氢管线钢氢渗透行为和氢脆敏感性的影响

[D]. 青岛: 中国石油大学(华东), 2018

[本文引用: 1]

Xue H B, Cheng Y F.

Hydrogen permeation and electrochemical corrosion behavior of the X80 pipeline steel weld

[J]. J. Mater. Eng. Perform., 2013, 22: 170

[本文引用: 1]

Yan C Y, Zhang G Y, Liu C Y.

Numerical simulation of hydrogen distribution in welded joint of X80 pipeline steel

[J]. Trans. China Welding Inst., 2015, 36(9): 103

[本文引用: 1]

严春妍, 张根元, 刘翠英.

X80管线钢焊接接头氢分布的数值模拟

[J]. 焊接学报, 2015, 36(9): 103

[本文引用: 1]

Birnbaum H K, Sofronis P.

Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture

[J] Mater. Sci. Eng., 1994, 176A: 191

[本文引用: 1]

Zhang T Y, Chu W Y, Xiao J M.

Strain field of hydrogen atoms in iron

[J]. Acta Metall. Sin., 1985, 21: 42

[本文引用: 1]

The difference between the chemical potential,μ_σ,of hydrogen atoms produ-cing a non-spherical symmetry strain in a solid sample under stress and that,μ_0corresponding to the state without stress has been studied.It is shown that μ_σ-μ_0=■=U,where σ_1——principal stress,■——strain component along thedirection of the principal stress,V——volume and U——interaction energy betweenthe strain field and external stress field.The hydrogen atoms producing the tetragonally symmetric strain are preferen-tially ordered in samples under stress.As a result,the variation of hydrogenconcentration with tensile stress σ will be different from that with compressive stressσ.For a general polycrystal the formulas are respectively■where C_t,C_p,C_0——hydrogen concentraiton under tensile stress,compressive stressand without stress respectively.Hence,ε_(11)/ε_(22)may be determined in terms of C_t/C_pwhich can be obtained by hydrogen permeation measurement.For example,according to Bockris's data,ε_(11)/ε_(22)=1.27 at temperature of 27℃ which impliesthat the strain field of hydrogen atoms in α-Fe is non-spherical symmetry.For a torsional stress τ,U=-0.55133Vτ(ε_(11)-ε_(22)).The interaction can resultin the enrichment of hydrogen atoms and hydrogen induced delayed crackingalong the planes inclined at an angle of α=45°to torsional axis,which was ob-served in pre-charged smooth torsional or type Ⅲ cracked specimens made of ultra-high strength steel.

张统一, 褚武扬, 肖纪美.

氢在铁中的应变场

[J]. 金属学报, 1985, 21: 42

[本文引用: 1]

计算了有应力和无应力状态下产生非球对称应变的氢原于的化学位之差,μ_σ-μ_0=-VΣσ_iε_(ii)~′,其中U就是氢应变场和外应力场的互作用能.对纯剪应力τ,则U=-0.55133Vτ(ε_(11)-ε_(22)),因而当氢在α-Fe中引起四方畸变时,它和剪应力就有互作用,从而可导致氢在45°面上富集,这就可解释充氢的无裂纹扭转试样以及III型裂纹试样能沿45°面产生氢致滞后断裂的实验事实.当非球对称应变的氢择优分布时,在拉伸和压缩条件下的氢浓度公式并不相同,分别为C_t=C_0exp[(0.70089ε_(11)+0.29911ε_(22))Vo/RT],C_0exp[(0.14956ε_(11)+0.85044ε_(22))Vσ/RT].因此,根据氢渗透实验所获得的C_t/C_0和C_p/C_0,就可定出ε_(11)/ε_(22).例如,用Bockris的数据可得ε_(11)/ε_(22)=1.27.这表明氢在α-Fe中的应变是非球对称的.

Park C, Kang N, Kim M, et al.

Effect of prestrain on hydrogen diffusion and trapping in structural steel

[J]. Mater. Lett., 2019, 235: 193

[本文引用: 1]

Jiang W C, Gong J M, Tang J Q, et al.

Finite element simulation of the effect of welding residual stress on hydrogen diffusion

[J]. Acta Metall. Sin., 2006, 42: 1221

[本文引用: 1]

A sequential coupling calculating method on hydrogen diffusion had been developed based on the finite element program-ABAQUS. Using this method, effect of welding residual stress on the hydrogen diffusion was numerically simulated for the as-weld condition and postweld heat treatment (PWHT) condition. The diffusion without the effect of stress was also taken into account and compared with those with stress. The results show that hydrogen will diffuse and accumulate in the higher stress region under the existence of welding residual stress gradient. A low hydrogen concentration valley exists near the heat-affected zone(HAZ), which is caused by the long-range diffusion of hydrogen to the high stress zone. After the PWHT, stress relaxation is obvious and the maximum stress is decreased about 50%, which influences the hydrogen diffusion and makes the hydrogen concentration be decreased about 40%. Therefore, decrease in the welding residual stress by PWHT can effectively reduce the hydrogen concentration in the weldment and the susceptibility of material to environment hydrogen cracking.

蒋文春, 巩建鸣, 唐建群 .

焊接残余应力对氢扩散影响的有限元模拟

[J]. 金属学报, 2006, 42: 1221

[本文引用: 1]

利用ABAQUS有限元软件,开发了一个氢扩散的耦合计算程序,对焊态和焊后热处理状态下的残余应力对氢扩散的影响进行了数值模拟,并与无应力状态下的氢扩散进行了比较。结果表明,存在焊接残余应力梯度时,氢向高应力区富集,在热影响区附近,有一个氢浓度低谷,这是氢向高应力区长程扩散所致。经过焊后热处理,应力松弛效果明显,最大残余应力下降近50%,对氢扩散的影响也大为降低,氢的最高浓度降低了近40%。因此,焊后热处理可以明显降低焊接接头处的残余应力,有效降低材料在氢环境下开裂的敏感性。

Liu W C, Wei B X, Yin H, et al.

Finite element analysis of hydrogen permeation in X80 pipeline with corrosion defects under axial strain

[J]. Surf. Technol., 2024, 53(8): 84

[本文引用: 1]

刘韦辰, 韦博鑫, 尹 航 .

轴向应变作用下含腐蚀缺陷X80管道氢渗透的有限元分析

[J]. 表面技术, 2024, 53(8): 84

[本文引用: 1]

Slifka A J, Drexler E S, Nanninga N E, et al.

Fatigue crack growth of two pipeline steels in a pressurized hydrogen environment

[J]. Corros. Sci., 2014, 78: 313

[本文引用: 1]

Guo W, Zhao W M, Zhang T M, et al.

Hydrogen permeation behavior of X80 steel under cathodic polarization and stress

[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 353

[本文引用: 1]

郭 望, 赵卫民, 张体明 .

阴极极化和应力耦合作用下X80钢氢渗透行为研究

[J]. 中国腐蚀与防护学报, 2015, 35: 353

[本文引用: 1]

Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 1

[本文引用: 1]

褚武扬, 乔利杰, 李金许 . 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013: 1

[本文引用: 1]

Zapffe C A, Sims C E.

Hydrogen embrittlement, internal stress and defects in steel

[J]. Am. Inst. Mining Metall. Petrol. Eng., 1941, 145: 225

[本文引用: 1]

Chu W Y, Gao K W, Huang Y Z, et al.

Initiation of fissure from hydrogen blister in rail steel

[J]. Corrosion, 2000, 56: 1046

[本文引用: 1]

Xie D G, Wang Z J, Sun J, et al.

In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface

[J]. Nat. Mater., 2015, 14: 899

[本文引用: 3]

Beachem C D.

A new model for hydrogen-assisted cracking (hydrogen “embrittlement”)

[J]. Metall. Trans., 1972, 3: 441

[本文引用: 1]

Ferreira P J, Robertson I M, Birnbaum H K.

Hydrogen effects on the interaction between dislocations

[J]. Acta Mater., 1998, 46: 1749

[本文引用: 1]

Huang L C, Chen D K, Xie D G, et al.

Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron

[J]. Nat. Mater., 2023, 22: 710

[本文引用: 1]

Djukic M, Bakic G, Šijački-Žeravčić V, et al.

The synergistic action of HELP and HEDE mechanisms of hydrogen embrittlement in steels

[A]. Invited Talk-International Symposium: “HYDROGENIUS, I 2CNER and HydroMate Joint Research Symposium on HydrogenMaterials Interactions 2021”[C]. Fukuoka, Japen, 2021

[本文引用: 1]

Xue J L, Guo W, Xia M S, et al.

In-depth understanding in the effect of hydrogen on microstructural evolution, mechanical properties and fracture micro-mechanisms of advanced high-strength steels welded joints

[J]. Corros. Sci., 2024, 233: 112112

[本文引用: 1]

/