|
|
氢促进局部塑性变形理论的发展趋势 |
张倩茹, 孙擎擎( ) |
中山大学材料学院 深圳 518107 |
|
Hydrogen Enhanced Localized Plasticity: A Critical Review |
ZHANG Qianru, SUN Qingqing( ) |
School of Materials, Sun Yat-sen University, Shenzhen 518107, China |
引用本文:
张倩茹, 孙擎擎. 氢促进局部塑性变形理论的发展趋势[J]. 中国腐蚀与防护学报, 2025, 45(2): 271-282.
Qianru ZHANG,
Qingqing SUN.
Hydrogen Enhanced Localized Plasticity: A Critical Review[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 271-282.
1 |
Liu Z B, Liang J X, Su J, et al. Research and application progress in ultra-high strength stainless steel [J]. Acta Metall. Sin., 2020, 56: 549
|
1 |
刘振宝, 梁剑雄, 苏 杰 等. 高强度不锈钢的研究及发展现状 [J]. 金属学报, 2020, 56: 549
doi: 10.11900/0412.1961.2019.00453
|
2 |
Li J X, Wang W, Zhou Y, et al. A review of research status of hydrogen embrittlement for automotive advanced high-strength steels [J]. Acta Metall. Sin., 2020, 56: 444
doi: 10.11900/0412.1961.2019.00427
|
2 |
李金许, 王 伟, 周 耀 等. 汽车用先进高强钢的氢脆研究进展 [J]. 金属学报, 2020, 56: 444
doi: 10.11900/0412.1961.2019.00427
|
3 |
Lan L Y, Kong X W, Qiu C L, et al. A review of recent advance on hydrogen embrittlement phenomenon based on multiscale mechanical experiments [J]. Acta Metall. Sin., 2021, 57: 845
doi: 10.11900/0412.1961.2020.00378
|
3 |
兰亮云, 孔祥伟, 邱春林 等. 基于多尺度力学实验的氢脆现象的最新研究进展 [J]. 金属学报, 2021, 57: 845
doi: 10.11900/0412.1961.2020.00378
|
4 |
Hanson J P, Bagri A, Lind J, et al. Crystallographic character of grain boundaries resistant to hydrogen-assisted fracture in Ni-base alloy 725 [J]. Nat. Commun., 2018, 9(1): 3386
doi: 10.1038/s41467-018-05549-y
pmid: 30140001
|
5 |
Luo H, Lu W J, Fang X F, et al. Beating hydrogen with its own weapon: Nano-twin gradients enhance embrittlement resistance of a high-entropy alloy [J]. Mater. Today, 2018, 21: 1003
|
6 |
Zhou X, Wu D K, Cheng X, et al. Research progress of detection techniques for permeated hydrogen [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1203
|
6 |
周 欣, 吴大康, 成 旭 等. 渗透氢检测方法研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1203
|
7 |
Wang Y F, Li Y Z, Huang Y T, et al. Effect of grain size on hydrogen embrittlement of 304L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 494
|
7 |
王艳飞, 李耀州, 黄玉婷 等. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 494
doi: 10.11902/1005.4537.2022.238
|
8 |
Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
|
8 |
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
|
9 |
Ma C, Cui Y F, Zhang Q, et al. Review of hydrogen embrittlement of medium manganese TRIP steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 885
|
9 |
马 成, 崔彦发, 张 青 等. 中锰TRIP钢氢致开裂性能研究现状与进展 [J]. 中国腐蚀与防护学报, 2022, 42: 885
|
10 |
Wang Z, Liu J, Zhang S Q, et al. Effect of strain rate on hydrogen embrittlement susceptibility of DP780 steel with hydrogen pre-charging [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 106
|
10 |
王 贞, 刘 静, 张施琦 等. 应变速率对预充氢DP780钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 106
|
11 |
Robertson I M, Sofronis P, Nagao A, et al. Hydrogen embrittlement understood [J]. Metall. Mater. Trans., 2015, 46A: 2323
|
12 |
Tetelman A S, Robertson W D. Direct observation and analysis of crack propagation in iron-3% silicon single crystals [J]. Acta Metall., 1963, 11: 415
|
13 |
Oriani R A. Whitney award lecture—1987: hydrogen—the versatile embrittler [J]. Corrosion, 1987, 43: 390
|
14 |
Westlake D G. The habit planes of zirconium hydride in zirconium and zircaloy [J]. J. Nucl. Mater., 1968, 26: 208
|
15 |
Birnbaum H K. Mechanical properties of metal hydrides [J]. J. Less Common Met., 1984, 104: 31
|
16 |
Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture [J]. Mater. Sci. Eng., 1994, 176A: 191
|
17 |
Wen M, Zhang L, An B, et al. Hydrogen-enhanced dislocation activity and vacancy formation during nanoindentation of nickel [J]. Phys. Rev., 2009, 80B: 094113
|
18 |
Xie D G, Wan L, Shan Z W. Hydrogen enhanced cracking via dynamic formation of grain boundary inside aluminium crystal [J]. Corros. Sci., 2021, 183: 109307
|
19 |
Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Trans., 1972, 3: 441
|
20 |
Shih D S, Robertson I M, Birnbaum H K. Hydrogen embrittlement of α titanium: in situ TEM studies [J]. Acta Metall., 1988, 36: 111
|
21 |
Rozenak P, Robertson I M, Birnbaum H K. HVEM studies of the effects of hydrogen on the deformation and fracture of AISI type 316 austenitic stainless steel [J]. Acta Metall. Mater., 1990, 38: 2031
|
22 |
Ferreira P J, Robertson I M, Birnbaum H K. Hydrogen effects on the interaction between dislocations [J]. Acta Mater., 1998, 46: 1749
|
23 |
Ferreira P J, Robertson I M, Birnbaum H K. Hydrogen effects on the character of dislocations in high-purity aluminum [J]. Acta Mater., 1999, 47: 2991
|
24 |
Tabata T, Birnbaum H K. Direct observations of the effect of hydrogen on the behavior of dislocations in iron [J]. Scr. Metall., 1983, 17: 947
|
25 |
Robertson I M, Birnbaum H K. An HVEM study of hydrogen effects on the deformation and fracture of nickel [J]. Acta Metall., 1986, 34: 353
|
26 |
Robertson I M. The effect of hydrogen on dislocation dynamics [J]. Eng. Fract. Mech., 2001, 68: 671
|
27 |
Huang L C, Chen D K, Xie D G, et al. Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron [J]. Nat. Mater., 2023, 22: 710
|
28 |
Wang S, Martin M L, Sofronis P, et al. Hydrogen-induced intergranular failure of iron [J]. Acta Mater., 2014, 69: 275
|
29 |
Teter D F, Robertson I M, Birnbaum H K. The effects of hydrogen on the deformation and fracture of β-titanium [J]. Acta Mater., 2001, 49: 4313
|
30 |
Li Z J, Chu W Y, Gao K W, et al. Three-dimensional molecular dynamics simulation of hydrogen-enhanced dislocation emission and crack propagation [J]. Prog. Nat. Sci., 2002, 12: 1001
|
30 |
李忠吉, 褚武扬, 高克玮 等. 氢促进位错发射和裂纹扩展的三维分子动力学模拟 [J]. 自然科学进展, 2002, 12: 1001
|
31 |
Jiang X G, Chu W Y, Xiao J M. Mechanism of hydrogen-facilitated nucleation of cleavage crack [J]. J. Chin. Soc. Corros. Prot., 1995, 15: 54
|
31 |
蒋兴钢, 褚武扬, 肖纪美. 氢促进解理裂纹形核的机制 [J]. 中国腐蚀与防护学报, 1995, 15: 54
|
32 |
Chen Y S, Lu H Z, Liang J T, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates [J]. Science, 2020, 367: 171
|
33 |
Wang S, Hashimoto N, Wang Y M, et al. Activation volume and density of mobile dislocations in hydrogen-charged iron [J]. Acta Mater., 2013, 61: 4734
|
34 |
Wilcox B A, Smith G C. The Portevin-Le Chatelier effect in hydrogen charged nickel [J]. Acta Metall., 1964, 12: 371
|
35 |
McInteer W A, Thompson A W, Bernstein I M. The effect of hydrogen on the slip character of nickel [J]. Acta Metall., 1980, 28: 887
|
36 |
Robertson I M, Birnbaum H K. Effect of hydrogen on the dislocation structure of deformed nickel [J]. Scr. Metall., 1984, 18: 269
|
37 |
Wang S, Nagao A, Edalati K, et al. Influence of hydrogen on dislocation self-organization in Ni [J]. Acta Mater., 2017, 135: 96
|
38 |
Harris Z D, Lawrence S K, Medlin D L, et al. Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel [J]. Acta Mater., 2018, 158: 180
|
39 |
Wang S, Nagao A, Sofronis P, et al. Hydrogen-modified dislocation structures in a cyclically deformed ferritic-pearlitic low carbon steel [J]. Acta Mater., 2018, 144: 164
|
40 |
Ogawa Y, Birenis D, Matsunaga H, et al. Multi-scale observation of hydrogen-induced, localized plastic deformation in fatigue-crack propagation in a pure iron [J]. Scr. Mater., 2017, 140: 13
|
41 |
Birenis D, Ogawa Y, Matsunaga H, et al. Interpretation of hydrogen-assisted fatigue crack propagation in BCC iron based on dislocation structure evolution around the crack wake [J]. Acta Mater., 2018, 156: 245
|
42 |
Nygren K E, Nagao A, Wang S, et al. Influence of internal hydrogen content on the evolved microstructure beneath fatigue striations in 316L austenitic stainless steel [J]. Acta Mater., 2021, 213: 116957
|
43 |
Pu Z, Chen Y, Dai L H. Strong resistance to hydrogen embrittlement of high-entropy alloy [J]. Mater. Sci. Eng., 2018, 736A: 156
|
44 |
Nygren K E, Wang S, Bertsch K M, et al. Hydrogen embrittlement of the equi-molar FeNiCoCr alloy [J]. Acta Mater., 2018, 157: 218
|
45 |
Bertsch K M, Wang S, Nagao A, et al. Hydrogen-induced compatibility constraints across grain boundaries drive intergranular failure of Ni [J]. Mater. Sci. Eng., 2019, 760A: 58
|
46 |
Yi J, Zhuang X Q, He J, et al. Effect of Mo doping on the gaseous hydrogen embrittlement of a CoCrNi medium-entropy alloy [J]. Corros. Sci., 2021, 189: 109628
|
47 |
Fu Z H, Wu P F, Zhu S Y, et al. Effects of interstitial C and N on hydrogen embrittlement behavior of non-equiatomic metastable FeMnCoCr high-entropy alloys [J]. Corros. Sci., 2022, 194: 109933
|
48 |
Cheng H X, Luo H, Pan Z M, et al. Hydrogen embrittlement of a precipitation-strengthened high-entropy alloy [J]. Corros. Sci., 2024, 227: 111708
|
49 |
Hansen N, Huang X, Winther G. Grain orientation, deformation microstructure and flow stress [J]. Mater. Sci. Eng., 2008, 494A: 61
|
50 |
Winther G, Huang X. Dislocation structures. Part II. Slip system dependence [J]. Philos. Mag., 2007, 87: 5215
|
51 |
Huang X, Winther G. Dislocation structures. Part I. Grain orientation dependence [J]. Philos. Mag., 2007, 87: 5189
|
52 |
Hansen N, Huang X, Pantleon W, et al. Grain orientation and dislocation patterns [J]. Philos. Mag., 2006, 86: 3981
|
53 |
Hansen N, Huang X, Hughes D A. Microstructural evolution and hardening parameters [J]. Mater. Sci. Eng., 2001, 317A: 3
|
54 |
Huang X. Grain orientation effect on microstructure in tensile strained copper [J]. Scr. Mater., 1998, 38: 1697
|
55 |
Huang X, Hansen N. Grain orientation dependence of microstructure in aluminium deformed in tension [J]. Scr. Mater., 1997, 37: 1
|
56 |
Hughes D A, Hansen N. The microstructural origin of work hardening stages [J]. Acta Mater., 2018, 148: 374
|
57 |
Hansen N, Mehl R F, Medalist A. New discoveries in deformed metals [J]. Metall. Mater. Trans., 2001, 32A: 2917
|
58 |
Wang S, Wang M P, Chen C, et al. Orientation dependence of the dislocation microstructure in compressed body-centered cubic molybdenum [J]. Mater. Charact., 2014, 91: 10
|
59 |
Li P, Li S X, Wang Z G, et al. Formation mechanisms of cyclic saturation dislocation patterns in [001], [011] and [ 1 ¯ 11] copper single crystals [J]. Acta Mater., 2010, 58: 3281
|
60 |
Sun Q Q, Chen J B, Cao F H. Orientation dependence of dislocation structure in surface grain of pure aluminium deformed in tension [J]. Mater. Charact., 2022, 193: 112298
|
61 |
Sun Q Q, Ni Y, Wang S. Orientation dependence of dislocation structure in surface grain of pure copper deformed in tension [J]. Acta Mater., 2021, 203: 116474.
|
62 |
Sun Q Q, He J, Nagao A, et al. Hydrogen-prompted heterogeneous development of dislocation structure in Ni [J]. Acta Mater., 2023, 246: 118660.
|
63 |
Li H B, Zheng Z L, He J, et al. Dislocation evolution in copper in the absence and presence of hydrogen [J]. Mater. Sci. Eng., 2022, 842A: 143082
|
64 |
Sun Q Q, Zhang H Z, Li H B, et al. Influence of near-surface dislocation cellular structure on Bauschinger effect [J]. J. Mater. Res. Technol., 2021, 13: 2012
|
65 |
Sun Q Q, Li H B, Wang S. Lattice rotation effect on the dislocation pattern of Cu deformed in tension [J]. Philos. Mag., 2022, 102: 875
|
66 |
Ghermaoui I M A, Oudriss A, Metsue A, et al. Multiscale analysis of hydrogen-induced softening in f.c.c. nickel single crystals oriented for multiple-slips: elastic screening effect [J]. Sci. Rep., 2019, 9: 13042
doi: 10.1038/s41598-019-49420-6
pmid: 31506536
|
67 |
Girardin G, Huvier C, Delafosse D, et al. Correlation between dislocation organization and slip bands: TEM and AFM investigations in hydrogen-containing nickel and nickel-chromium [J]. Acta Mater., 2015, 91: 141
|
68 |
Deng Y, Barnoush A. Hydrogen embrittlement revealed via novel in situ fracture experiments using notched micro-cantilever specimens [J]. Acta Mater., 2018, 142: 236
|
69 |
Lu X, Wang D, Li Z M, et al. Hydrogen susceptibility of an interstitial equimolar high-entropy alloy revealed by in-situ electrochemical microcantilever bending test [J]. Mater. Sci. Eng., 2019, 762A: 138114.
|
70 |
Deng Y, Hajilou T, Wan D, et al. In-situ micro-cantilever bending test in environmental scanning electron microscope: real time observation of hydrogen enhanced cracking [J]. Scr. Mater., 2017, 127: 19
|
71 |
Hajilou T, Deng Y, Rogne B R, et al. In situ electrochemical microcantilever bending test: a new insight into hydrogen enhanced cracking [J]. Scr. Mater., 2017, 132: 17
|
72 |
Hajilou T, Taji I, Christien F, et al. Hydrogen-enhanced intergranular failure of sulfur-doped nickel grain boundary: In situ electrochemical micro-cantilever bending vs. DFT [J]. Mater. Sci. Eng., 2020, 794A: 139967
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|