Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 271-282     CSTR: 32134.14.1005.4537.2024.184      DOI: 10.11902/1005.4537.2024.184
  临氢关键材料服役行为研究专刊 本期目录 | 过刊浏览 |
氢促进局部塑性变形理论的发展趋势
张倩茹, 孙擎擎()
中山大学材料学院 深圳 518107
Hydrogen Enhanced Localized Plasticity: A Critical Review
ZHANG Qianru, SUN Qingqing()
School of Materials, Sun Yat-sen University, Shenzhen 518107, China
引用本文:

张倩茹, 孙擎擎. 氢促进局部塑性变形理论的发展趋势[J]. 中国腐蚀与防护学报, 2025, 45(2): 271-282.
Qianru ZHANG, Qingqing SUN. Hydrogen Enhanced Localized Plasticity: A Critical Review[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 271-282.

全文: PDF(20499 KB)   HTML
摘要: 

认识金属中氢与位错之间的交互作用是理解氢脆微观机制的关键。本文介绍了氢促进局部塑性变形理论(HELP)的提出、内涵与研究进展,并进行述评。针对HELP机制的主要现存问题,给出了一种氢与位错交互作用研究的新范式,并作出展望。

关键词 氢脆机理氢促进局部塑性变形    
Abstract

The key of understanding hydrogen embrittlement mechanism of metals is to fully elucidate the interaction between hydrogen and dislocation. This paper introduces the history, content and development of the theory of hydrogen enhanced localized plasticity (HELP) and reviews it critically. The unsettling questions regard HELP mechanism are emphasized and addressed. In order to answer the unsettling questions, a new research methodology to reveal the interaction between hydrogen and dislocation is presented and prospected.

Key wordshydrogen embrittlement    mechanism    hydrogen enhanced localized plasticity
收稿日期: 2024-06-14      32134.14.1005.4537.2024.184
ZTFLH:  O344  
基金资助:国家自然科学基金(52101115)
通讯作者: 孙擎擎,E-mail:sunqq7@mail.sysu.edu.cn,研究方向为金属使役行为与延寿技术
Corresponding author: SUN Qingqing, E-mail: sunqq7@mail.sysu.edu.cn
作者简介: 张倩茹,女,1999年生,硕士生
图1  氢促进位错运动的原位电镜观察[22]与氢气团弹性屏蔽效应[16]
图2  α-Fe中单根螺位错在有氢和无氢环境下的运动情况[27]
图3  氢对典型金属位错组态的影响[33,37,39,42]
图4  金属变形组织的晶体取向关联性[54,58,59]
图5  本课题组及其合作者发展的氢对位错集群行为影响研究的新范式
图6  纯镍中氢对位错集群行为的影响研究(应变为16.0%)[57]
1 Liu Z B, Liang J X, Su J, et al. Research and application progress in ultra-high strength stainless steel [J]. Acta Metall. Sin., 2020, 56: 549
1 刘振宝, 梁剑雄, 苏 杰 等. 高强度不锈钢的研究及发展现状 [J]. 金属学报, 2020, 56: 549
doi: 10.11900/0412.1961.2019.00453
2 Li J X, Wang W, Zhou Y, et al. A review of research status of hydrogen embrittlement for automotive advanced high-strength steels [J]. Acta Metall. Sin., 2020, 56: 444
doi: 10.11900/0412.1961.2019.00427
2 李金许, 王 伟, 周 耀 等. 汽车用先进高强钢的氢脆研究进展 [J]. 金属学报, 2020, 56: 444
doi: 10.11900/0412.1961.2019.00427
3 Lan L Y, Kong X W, Qiu C L, et al. A review of recent advance on hydrogen embrittlement phenomenon based on multiscale mechanical experiments [J]. Acta Metall. Sin., 2021, 57: 845
doi: 10.11900/0412.1961.2020.00378
3 兰亮云, 孔祥伟, 邱春林 等. 基于多尺度力学实验的氢脆现象的最新研究进展 [J]. 金属学报, 2021, 57: 845
doi: 10.11900/0412.1961.2020.00378
4 Hanson J P, Bagri A, Lind J, et al. Crystallographic character of grain boundaries resistant to hydrogen-assisted fracture in Ni-base alloy 725 [J]. Nat. Commun., 2018, 9(1): 3386
doi: 10.1038/s41467-018-05549-y pmid: 30140001
5 Luo H, Lu W J, Fang X F, et al. Beating hydrogen with its own weapon: Nano-twin gradients enhance embrittlement resistance of a high-entropy alloy [J]. Mater. Today, 2018, 21: 1003
6 Zhou X, Wu D K, Cheng X, et al. Research progress of detection techniques for permeated hydrogen [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1203
6 周 欣, 吴大康, 成 旭 等. 渗透氢检测方法研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1203
7 Wang Y F, Li Y Z, Huang Y T, et al. Effect of grain size on hydrogen embrittlement of 304L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 494
7 王艳飞, 李耀州, 黄玉婷 等. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 494
doi: 10.11902/1005.4537.2022.238
8 Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
8 姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
9 Ma C, Cui Y F, Zhang Q, et al. Review of hydrogen embrittlement of medium manganese TRIP steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 885
9 马 成, 崔彦发, 张 青 等. 中锰TRIP钢氢致开裂性能研究现状与进展 [J]. 中国腐蚀与防护学报, 2022, 42: 885
10 Wang Z, Liu J, Zhang S Q, et al. Effect of strain rate on hydrogen embrittlement susceptibility of DP780 steel with hydrogen pre-charging [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 106
10 王 贞, 刘 静, 张施琦 等. 应变速率对预充氢DP780钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 106
11 Robertson I M, Sofronis P, Nagao A, et al. Hydrogen embrittlement understood [J]. Metall. Mater. Trans., 2015, 46A: 2323
12 Tetelman A S, Robertson W D. Direct observation and analysis of crack propagation in iron-3% silicon single crystals [J]. Acta Metall., 1963, 11: 415
13 Oriani R A. Whitney award lecture—1987: hydrogen—the versatile embrittler [J]. Corrosion, 1987, 43: 390
14 Westlake D G. The habit planes of zirconium hydride in zirconium and zircaloy [J]. J. Nucl. Mater., 1968, 26: 208
15 Birnbaum H K. Mechanical properties of metal hydrides [J]. J. Less Common Met., 1984, 104: 31
16 Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture [J]. Mater. Sci. Eng., 1994, 176A: 191
17 Wen M, Zhang L, An B, et al. Hydrogen-enhanced dislocation activity and vacancy formation during nanoindentation of nickel [J]. Phys. Rev., 2009, 80B: 094113
18 Xie D G, Wan L, Shan Z W. Hydrogen enhanced cracking via dynamic formation of grain boundary inside aluminium crystal [J]. Corros. Sci., 2021, 183: 109307
19 Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Trans., 1972, 3: 441
20 Shih D S, Robertson I M, Birnbaum H K. Hydrogen embrittlement of α titanium: in situ TEM studies [J]. Acta Metall., 1988, 36: 111
21 Rozenak P, Robertson I M, Birnbaum H K. HVEM studies of the effects of hydrogen on the deformation and fracture of AISI type 316 austenitic stainless steel [J]. Acta Metall. Mater., 1990, 38: 2031
22 Ferreira P J, Robertson I M, Birnbaum H K. Hydrogen effects on the interaction between dislocations [J]. Acta Mater., 1998, 46: 1749
23 Ferreira P J, Robertson I M, Birnbaum H K. Hydrogen effects on the character of dislocations in high-purity aluminum [J]. Acta Mater., 1999, 47: 2991
24 Tabata T, Birnbaum H K. Direct observations of the effect of hydrogen on the behavior of dislocations in iron [J]. Scr. Metall., 1983, 17: 947
25 Robertson I M, Birnbaum H K. An HVEM study of hydrogen effects on the deformation and fracture of nickel [J]. Acta Metall., 1986, 34: 353
26 Robertson I M. The effect of hydrogen on dislocation dynamics [J]. Eng. Fract. Mech., 2001, 68: 671
27 Huang L C, Chen D K, Xie D G, et al. Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron [J]. Nat. Mater., 2023, 22: 710
28 Wang S, Martin M L, Sofronis P, et al. Hydrogen-induced intergranular failure of iron [J]. Acta Mater., 2014, 69: 275
29 Teter D F, Robertson I M, Birnbaum H K. The effects of hydrogen on the deformation and fracture of β-titanium [J]. Acta Mater., 2001, 49: 4313
30 Li Z J, Chu W Y, Gao K W, et al. Three-dimensional molecular dynamics simulation of hydrogen-enhanced dislocation emission and crack propagation [J]. Prog. Nat. Sci., 2002, 12: 1001
30 李忠吉, 褚武扬, 高克玮 等. 氢促进位错发射和裂纹扩展的三维分子动力学模拟 [J]. 自然科学进展, 2002, 12: 1001
31 Jiang X G, Chu W Y, Xiao J M. Mechanism of hydrogen-facilitated nucleation of cleavage crack [J]. J. Chin. Soc. Corros. Prot., 1995, 15: 54
31 蒋兴钢, 褚武扬, 肖纪美. 氢促进解理裂纹形核的机制 [J]. 中国腐蚀与防护学报, 1995, 15: 54
32 Chen Y S, Lu H Z, Liang J T, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates [J]. Science, 2020, 367: 171
33 Wang S, Hashimoto N, Wang Y M, et al. Activation volume and density of mobile dislocations in hydrogen-charged iron [J]. Acta Mater., 2013, 61: 4734
34 Wilcox B A, Smith G C. The Portevin-Le Chatelier effect in hydrogen charged nickel [J]. Acta Metall., 1964, 12: 371
35 McInteer W A, Thompson A W, Bernstein I M. The effect of hydrogen on the slip character of nickel [J]. Acta Metall., 1980, 28: 887
36 Robertson I M, Birnbaum H K. Effect of hydrogen on the dislocation structure of deformed nickel [J]. Scr. Metall., 1984, 18: 269
37 Wang S, Nagao A, Edalati K, et al. Influence of hydrogen on dislocation self-organization in Ni [J]. Acta Mater., 2017, 135: 96
38 Harris Z D, Lawrence S K, Medlin D L, et al. Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel [J]. Acta Mater., 2018, 158: 180
39 Wang S, Nagao A, Sofronis P, et al. Hydrogen-modified dislocation structures in a cyclically deformed ferritic-pearlitic low carbon steel [J]. Acta Mater., 2018, 144: 164
40 Ogawa Y, Birenis D, Matsunaga H, et al. Multi-scale observation of hydrogen-induced, localized plastic deformation in fatigue-crack propagation in a pure iron [J]. Scr. Mater., 2017, 140: 13
41 Birenis D, Ogawa Y, Matsunaga H, et al. Interpretation of hydrogen-assisted fatigue crack propagation in BCC iron based on dislocation structure evolution around the crack wake [J]. Acta Mater., 2018, 156: 245
42 Nygren K E, Nagao A, Wang S, et al. Influence of internal hydrogen content on the evolved microstructure beneath fatigue striations in 316L austenitic stainless steel [J]. Acta Mater., 2021, 213: 116957
43 Pu Z, Chen Y, Dai L H. Strong resistance to hydrogen embrittlement of high-entropy alloy [J]. Mater. Sci. Eng., 2018, 736A: 156
44 Nygren K E, Wang S, Bertsch K M, et al. Hydrogen embrittlement of the equi-molar FeNiCoCr alloy [J]. Acta Mater., 2018, 157: 218
45 Bertsch K M, Wang S, Nagao A, et al. Hydrogen-induced compatibility constraints across grain boundaries drive intergranular failure of Ni [J]. Mater. Sci. Eng., 2019, 760A: 58
46 Yi J, Zhuang X Q, He J, et al. Effect of Mo doping on the gaseous hydrogen embrittlement of a CoCrNi medium-entropy alloy [J]. Corros. Sci., 2021, 189: 109628
47 Fu Z H, Wu P F, Zhu S Y, et al. Effects of interstitial C and N on hydrogen embrittlement behavior of non-equiatomic metastable FeMnCoCr high-entropy alloys [J]. Corros. Sci., 2022, 194: 109933
48 Cheng H X, Luo H, Pan Z M, et al. Hydrogen embrittlement of a precipitation-strengthened high-entropy alloy [J]. Corros. Sci., 2024, 227: 111708
49 Hansen N, Huang X, Winther G. Grain orientation, deformation microstructure and flow stress [J]. Mater. Sci. Eng., 2008, 494A: 61
50 Winther G, Huang X. Dislocation structures. Part II. Slip system dependence [J]. Philos. Mag., 2007, 87: 5215
51 Huang X, Winther G. Dislocation structures. Part I. Grain orientation dependence [J]. Philos. Mag., 2007, 87: 5189
52 Hansen N, Huang X, Pantleon W, et al. Grain orientation and dislocation patterns [J]. Philos. Mag., 2006, 86: 3981
53 Hansen N, Huang X, Hughes D A. Microstructural evolution and hardening parameters [J]. Mater. Sci. Eng., 2001, 317A: 3
54 Huang X. Grain orientation effect on microstructure in tensile strained copper [J]. Scr. Mater., 1998, 38: 1697
55 Huang X, Hansen N. Grain orientation dependence of microstructure in aluminium deformed in tension [J]. Scr. Mater., 1997, 37: 1
56 Hughes D A, Hansen N. The microstructural origin of work hardening stages [J]. Acta Mater., 2018, 148: 374
57 Hansen N, Mehl R F, Medalist A. New discoveries in deformed metals [J]. Metall. Mater. Trans., 2001, 32A: 2917
58 Wang S, Wang M P, Chen C, et al. Orientation dependence of the dislocation microstructure in compressed body-centered cubic molybdenum [J]. Mater. Charact., 2014, 91: 10
59 Li P, Li S X, Wang Z G, et al. Formation mechanisms of cyclic saturation dislocation patterns in [001], [011] and [ 1 ¯ 11] copper single crystals [J]. Acta Mater., 2010, 58: 3281
60 Sun Q Q, Chen J B, Cao F H. Orientation dependence of dislocation structure in surface grain of pure aluminium deformed in tension [J]. Mater. Charact., 2022, 193: 112298
61 Sun Q Q, Ni Y, Wang S. Orientation dependence of dislocation structure in surface grain of pure copper deformed in tension [J]. Acta Mater., 2021, 203: 116474.
62 Sun Q Q, He J, Nagao A, et al. Hydrogen-prompted heterogeneous development of dislocation structure in Ni [J]. Acta Mater., 2023, 246: 118660.
63 Li H B, Zheng Z L, He J, et al. Dislocation evolution in copper in the absence and presence of hydrogen [J]. Mater. Sci. Eng., 2022, 842A: 143082
64 Sun Q Q, Zhang H Z, Li H B, et al. Influence of near-surface dislocation cellular structure on Bauschinger effect [J]. J. Mater. Res. Technol., 2021, 13: 2012
65 Sun Q Q, Li H B, Wang S. Lattice rotation effect on the dislocation pattern of Cu deformed in tension [J]. Philos. Mag., 2022, 102: 875
66 Ghermaoui I M A, Oudriss A, Metsue A, et al. Multiscale analysis of hydrogen-induced softening in f.c.c. nickel single crystals oriented for multiple-slips: elastic screening effect [J]. Sci. Rep., 2019, 9: 13042
doi: 10.1038/s41598-019-49420-6 pmid: 31506536
67 Girardin G, Huvier C, Delafosse D, et al. Correlation between dislocation organization and slip bands: TEM and AFM investigations in hydrogen-containing nickel and nickel-chromium [J]. Acta Mater., 2015, 91: 141
68 Deng Y, Barnoush A. Hydrogen embrittlement revealed via novel in situ fracture experiments using notched micro-cantilever specimens [J]. Acta Mater., 2018, 142: 236
69 Lu X, Wang D, Li Z M, et al. Hydrogen susceptibility of an interstitial equimolar high-entropy alloy revealed by in-situ electrochemical microcantilever bending test [J]. Mater. Sci. Eng., 2019, 762A: 138114.
70 Deng Y, Hajilou T, Wan D, et al. In-situ micro-cantilever bending test in environmental scanning electron microscope: real time observation of hydrogen enhanced cracking [J]. Scr. Mater., 2017, 127: 19
71 Hajilou T, Deng Y, Rogne B R, et al. In situ electrochemical microcantilever bending test: a new insight into hydrogen enhanced cracking [J]. Scr. Mater., 2017, 132: 17
72 Hajilou T, Taji I, Christien F, et al. Hydrogen-enhanced intergranular failure of sulfur-doped nickel grain boundary: In situ electrochemical micro-cantilever bending vs. DFT [J]. Mater. Sci. Eng., 2020, 794A: 139967
[1] 刘天乐, 韦博鑫, 付安庆, 苏航, 陈廷枢, 王超明, 王邃. 掺氢环境下X80管线钢气相氢损伤研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[2] 张慧云, 郑留伟, 梁伟. 退火工艺对304奥氏体不锈钢的组织演变及氢脆行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[3] 陈锴, 杜一帆, 徐浩昀, 吕良, 党桂铭, 王玉金, 郑树启. X80管线钢氢渗透行为及氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[4] 李新城, 李兆南, 王海锋, 徐云泽, 王明昱, 甄兴伟. DH36海洋工程钢焊接结构的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[5] 崔博伦, 赵杰, 吕冉, 李敬法, 宇波, 闫东雷. 掺氢天然气输送管材氢脆与腐蚀复合防护技术研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 327-337.
[6] 王明洋, 夏大海. 高强铝合金氢脆机理研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
[7] 万红江, 明洪亮, 王俭秋, 韩恩厚. H2O2CO掺杂对X52管线钢氢脆敏感性影响研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 371-380.
[8] 程凯源, 彭杨, 黄峰, 程向龙, 徐云峰, 彭志贤, 刘静. 典型无缝钢管钢掺氢天然气环境适应性及氢致损伤机理[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
[9] 陈辉, 徐福斌, 方亚雄, 朱忠亮. Super304H不锈钢在605 ℃640 ℃超临界水中的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
[10] 赵骞, 张洁, 毛锐锐, 缪春辉, 卞亚飞, 滕越, 汤文明. Q235钢结构件表面热镀锌层的应力腐蚀及其机理[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[11] 李鑫, 韦博鑫, 鲁仰辉, 孙晨, 于文涛, 徐猛, 刘伟. 临氢环境下管线钢氢损伤机理研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1125-1133.
[12] 巫海亮, 陈宇强, 黄亮, 顾宏宇, 孙宏博, 刘佳俊, 王乃光, 宋宇峰. 高铁散热器用3003铝合金焊接隔板的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[13] 徐云峰, 王少峰, 何龙, 刘冬, 黄峰, 刘静. EPS处理对QStE700TM钢氢脆敏感性影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 691-699.
[14] 韩东晓, 纪文会, 王通, 王巍. 基于弛豫时间分布和有限元模拟的环氧涂层渗水行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[15] 袁小虎, 李定骏, 王天剑, 郭显平, 张乃强, 朱忠亮. 超临界水环境中三种Ni-Cr涂层氧化特性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 119-129.