|
|
高强铝合金氢脆机理研究进展 |
王明洋, 夏大海( ) |
天津大学材料科学与工程学院 天津 300350 |
|
Research Progress on Hydrogen Embrittlement Mechanism of High Strength Al-alloy |
WANG Mingyang, XIA Da-Hai( ) |
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China |
引用本文:
王明洋, 夏大海. 高强铝合金氢脆机理研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
Mingyang WANG,
Da-Hai XIA.
Research Progress on Hydrogen Embrittlement Mechanism of High Strength Al-alloy[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 261-270.
1 |
Campestrini P, van Westing E P M, van Rooijen H W, et al. Relation between microstructural aspects of AA2024 and its corrosion behaviour investigated using AFM scanning potential technique [J]. Corros. Sci., 2000, 42: 1853
|
2 |
Hirsch J. Recent development in aluminium for automotive applications [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1995
|
3 |
Li Y Y, Wang Q, Zhang H W, et al. Role of solute atoms and vacancy in hydrogen embrittlement mechanism of aluminum: a first-principles study [J]. Int. J. Hydrog. Energy, 2023, 48: 4516
|
4 |
Dwivedi S K, Vishwakarma M. Hydrogen embrittlement in different materials: a review [J]. Int. J. Hydrog. Energy, 2018, 43: 21603
|
5 |
Breen A J, Stephenson L T, Sun B H, et al. Solute hydrogen and deuterium observed at the near atomic scale in high-strength steel [J]. Acta Mater., 2020, 188: 108
|
6 |
Weng S, Meng C, Zhu J F, et al. Effect of fatigue damage under stress-controlled mode on the corrosion behavior of AA7075-T651 al-alloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1029
|
6 |
翁 硕, 孟 超, 朱江峰 等. 应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1029
|
7 |
Chen J F, Zhang X F, Zou L C, et al. Effect of precipitate state on the stress corrosion behavior of 7050 aluminum alloy [J]. Mater. Charact., 2016, 114: 1
|
8 |
Zhang M H, Liu S D, Jiang J Y, et al. Effect of Cu content on intergranular corrosion and exfoliation corrosion susceptibility of Al-Zn-Mg-(Cu) alloys [J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 1963
|
9 |
Chen S Y, Li J Y, Hu G Y, et al. Effect of Zn/Mg ratios on SCC, electrochemical corrosion properties and microstructure of Al-Zn-Mg alloy [J]. J. Alloy. Compd., 2018, 757: 259
|
10 |
Liu L, Cui X Y, Jiang J T, et al. Segregation of the major alloying elements to Al3(Sc, Zr) precipitates in an Al-Zn-Mg-Cu-Sc-Zr alloy [J]. Mater. Charact., 2019, 157: 109898
|
11 |
Xia P, Wang S C, Huang H L, et al. Effect of Sc and Zr additions on recrystallization behavior and intergranular corrosion resistance of Al-Zn-Mg-Cu alloys [J]. Materials, 2021, 14: 5516
|
12 |
Alexopoulos N D, Velonaki Z, Stergiou C I, et al. The effect of artificial ageing heat treatments on the corrosion-induced hydrogen embrittlement of 2024 (Al-Cu) aluminium alloy [J]. Corros. Sci., 2016, 102: 413
|
13 |
Song Y F, Ding X F, Xiao L R, et al. Effects of two-stage aging on the dimensional stability of Al-Cu-Mg alloy [J]. J. Alloy. Compd., 2017, 701: 508
|
14 |
Xu X H, Deng Y L, Pan Q L, et al. Enhancing the intergranular corrosion resistance of the Al-Mg-Si alloy with low Zn content by the interrupted aging treatment [J]. Metall. Mater. Trans., 2021, 52A: 4907
|
15 |
Han N M, Zhang X M, Liu S D, et al. Effects of retrogression and reaging on strength and fracture toughness of aluminum alloy 7050 [J]. Chin. J. Nonferrous Met., 2012, 22: 1871
|
15 |
韩念梅, 张新明, 刘胜胆 等. 回归再时效对7050铝合金强度和断裂韧性的影响 [J]. 中国有色金属学报, 2012, 22: 1871
|
16 |
Huang I W, Hurley B L, Yang F, et al. Dependence on temperature, pH, and Cl- in the uniform corrosion of aluminum alloys 2024-T3, 6061-T6, and 7075-T6 [J]. Electrochim. Acta, 2016, 199: 242
|
17 |
Song R G, Dietzel W, Zhang B J, et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2004, 52: 4727
|
18 |
Safyari M, Mori G, Ucsnik S, et al. Mechanisms of hydrogen absorption, trapping and release during galvanostatic anodization of high-strength aluminum alloys [J]. J. Mater. Res. Technol., 2023, 22: 80
|
19 |
Peng H, Cheng X Y, Li X L, et al. Effect of V and Nb on hydrogen traps in high strength low alloy steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 415
|
19 |
彭 浩, 程晓英, 李晓亮 等. 高强度低合金钢中V和Nb对氢陷阱的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 415
|
20 |
Johnson W H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids [J]. Proc. Roy. Soc. London, 1875, 23: 168
|
21 |
Negi A, Elkhodbia M, Barsoum I, et al. Coupled analysis of hydrogen diffusion, deformation, and fracture: a review [J]. Int. J. Hydrog. Energy, 2024, 82: 281
|
22 |
Wang Y F, Li Y Z, Huang Y T, et al. Effect of grain size on hydrogen embrittlement of 304L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 494
|
22 |
王艳飞, 李耀州, 黄玉婷 等. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 494
doi: 10.11902/1005.4537.2022.238
|
23 |
Śmiałowski M. Hydrogen in Steel [J]. New York: Pergamon Press, 1962
|
24 |
Chu W Y. Hydrogen Damage and Delayed Fracture [M]. Beijing: Metallurgical Industry Press, 1988
|
24 |
褚武扬. 氢损伤和滞后断裂 [M]. 北京: 冶金工业出版社, 1988
|
25 |
Fan Z B, Gao Z Y, Zong L J, et al. Corrosion behaviour and characteristics of 1050A Al-alloy exposed in typical atmospheres of Shandong Province [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1055
|
25 |
樊志彬, 高智悦, 宗立君 等. 1050A铝合金在山东不同典型环境中的大气腐蚀行为特征研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1055
doi: 10.11902/1005.4537.2023.321
|
26 |
Hirata K, Iikubo S, Koyama M, et al. First-principles study on hydrogen diffusivity in BCC, FCC, and HCP iron [J]. Metall. Mater. Trans., 2018, 49A: 5015
|
27 |
Hagi H, Hayashi Y. Effect of dislocation trapping on hydrogen and deuterium diffusion in iron [J]. Trans. Japan Inst. Met., 1987, 28: 368
|
28 |
Chu W Y, Qiao L J, Li J X, et al. Typical Systems of Hydrogen Embrittlement and Stress Corrosio [M]. Beijing: Science Press, 2013
|
28 |
褚武扬, 乔利杰, 李金许 等. 氢脆和应力腐蚀-典型体系 [M]. 北京: 科学出版社, 2013
|
29 |
Zhou X, Wu D K, Cheng X, et al. Research progress of detection techniques for permeated hydrogen [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1203
|
29 |
周 欣, 吴大康, 成 旭 等. 渗透氢检测方法研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1203
|
30 |
Pundt A, Kirchheim R. Hydrogen in metals: microstructural aspects [J]. Annu. Rev. Mater. Res., 2006, 36: 555
|
31 |
Pfeil L B. The effect of occluded hydrogen on the tensile strength of iron [J]. Proc. Roy. Soc., 1926, 112A: 182
|
32 |
Troiano A R. The role of hydrogen and other interstitials in the mechanical behavior of metals: (1959 edward de mille campbell memorial lecture) [J]. Metall. Microstruct. Anal., 2016, 5: 557
|
33 |
Oriani R A. A mechanistic theory of hydrogen embrittlement of steels [J]. Ber. Bunsenges. Phys. Chem., 1972, 76: 848
|
34 |
Zhao H, Chakraborty P, Ponge D, et al. Hydrogen trapping and embrittlement in high-strength Al alloys [J]. Nature, 2022, 602: 437
|
35 |
Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Trans., 1972, 3: 441
|
36 |
Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture [J]. Mater. Sci. Eng., 1994, 176A: 191
|
37 |
Sofronis P, Birnbaum H K. Hydrogen enhanced localized plasticity: a mechanism for hydrogen related fracture [A]. Proceedings of the 1993 ASME Winter Annual Meeting [C]. New Orleans, 1993
|
38 |
Lu G, Zhang Q, Kioussis N, et al. Hydrogen-enhanced local plasticity in aluminum: an ab initio study [J]. Phys. Rev. Lett., 2001, 87: 095501
|
39 |
Lynch S P. Mechanisms of hydrogen-assisted cracking [J]. Met. Forum, 1979, 2: 189
|
40 |
Daw M S, Baskes M I. Application of the embedded atom method to hydrogen embrittlement [A]. LatanisionRM, JonesRH. Chemistry and Physics of Fracture [M]. Dordrecht: Springer, 1987: 196
|
41 |
Lu G, Zhang Q, Kioussis N, et al. Hydrogen-enhanced local plasticity in aluminum: an ab initio study [J]. Phys. Rev. Lett., 2001, 87: 095501
|
42 |
Safyari M, Khossossi N, Meisel T, et al. New insights into hydrogen trapping and embrittlement in high strength aluminum alloys [J]. Corros. Sci., 2023, 223: 111453
|
43 |
Lynch S P. Environmentally assisted cracking: overview of evidence for an adsorption-induced localised-slip process [J]. Acta Metall., 1988, 36: 2639
|
44 |
Yamaguchi M, Tsuru T, Ebihara K I, et al. Hydrogen trapping in Mg2Si and Al7FeCu2 intermetallic compounds in aluminum alloy: first-principles calculations [J]. Mater. Trans., 2020, 61: 1907
|
45 |
Ji Y C, Dong C F, Wei X, et al. Discontinuous model combined with an atomic mechanism simulates the precipitated η′ phase effect in intergranular cracking of 7-series aluminum alloys [J]. Comp. Mater. Sci., 2019, 166: 282
|
46 |
Tsuru T, Yamaguchi M, Ebihara K, et al. First-principles study of hydrogen segregation at the MgZn2 precipitate in Al-Mg-Zn alloys [J]. Comp. Mater. Sci., 2018, 148: 301
|
47 |
Chen M Y, Liu S D, He K Z, et al. Hydrogen-induced failure in a partially-recrystallized Al-Zn-Mg-Cu alloy with different aging conditions: influence of deformation behavior dominated by microstructures [J]. Mater. Des., 2023, 233: 112199
|
48 |
Moshtaghi M, Safyari M, Hojo T. Effect of solution treatment temperature on grain boundary composition and environmental hydrogen embrittlement of an Al-Zn-Mg-Cu alloy [J]. Vacuum, 2021, 184: 109937
|
49 |
Safyari M, Moshtaghi M, Kuramoto S, et al. Influence of microstructure-driven hydrogen distribution on environmental hydrogen embrittlement of an Al-Cu-Mg alloy [J]. Int. J. Hydrog. Energy, 2021, 46: 37502
|
50 |
De Francisco U, Larrosa N O, Peel M J. The influence of temperature on hydrogen environmentally assisted cracking of AA7449-T7651 in moist air [J]. Corros. Sci., 2021, 180: 109199
|
51 |
Tang J W, Wang Y F, Fujihara H, et al. Stress corrosion cracking induced by the combination of external and internal hydrogen in Al-Zn-Mg-Cu alloy [J]. Scr. Mater., 2024, 239: 115804
|
52 |
Safyari M, Hojo T, Moshtaghi M. Effect of environmental relative humidity on hydrogen-induced mechanical degradation in an Al-Zn-Mg-Cu alloy [J]. Vacuum, 2021, 192: 110489
|
53 |
Taheri M, Albrecht J, Bernstein I, et al. Strain-rate effects on hydrogen embrittlement of 7075 aluminum [J]. Scr. Metall., 1979, 13: 871
|
54 |
Gest R J, Troiano A R. Stress corrosion and hydrogen embrittlement in an aluminum alloy [J]. Corrosion, 1974, 30: 274
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|