Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 261-270     CSTR: 32134.14.1005.4537.2024.238      DOI: 10.11902/1005.4537.2024.238
  临氢关键材料服役行为研究专刊 本期目录 | 过刊浏览 |
高强铝合金氢脆机理研究进展
王明洋, 夏大海()
天津大学材料科学与工程学院 天津 300350
Research Progress on Hydrogen Embrittlement Mechanism of High Strength Al-alloy
WANG Mingyang, XIA Da-Hai()
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
引用本文:

王明洋, 夏大海. 高强铝合金氢脆机理研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
Mingyang WANG, Da-Hai XIA. Research Progress on Hydrogen Embrittlement Mechanism of High Strength Al-alloy[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 261-270.

全文: PDF(10438 KB)   HTML
摘要: 

氢脆是高强铝合金在服役环境中应用所面临的问题之一。本文首先总结了氢的来源及其与高强铝合金的相互作用,介绍了氢脆的主要机制,包括氢促局部塑性(HELP)、氢促解聚(HEDE)、氢诱导位错发射模型(AIDE)和混合模型。随后,分析并讨论了高强铝合金微观结构(如第二相、位错、晶界等)和环境因子(如温度、湿度、应变速率等)对氢脆敏感性的影响。最后,指出在氢脆过程中,氢、第二相和裂纹之间的协同作用,以及多种环境因素耦合效应对高强铝合金氢脆敏感性的影响是亟待解决的问题。此外,通过调控不可逆氢陷阱的结构和数量是缓解氢脆的有效途径之一。

关键词 高强铝合金氢脆氢捕获第一性原理计算    
Abstract

Hydrogen embrittlement is one of the problems when the high strength Al-alloy is applied in hydrogen related service environments. This paper first summarizes the sources of hydrogen and its role in high-strength Al-alloys, along with the main mechanisms of hydrogen embrittlement: hydrogen enhanced localized plasticity (HELP), hydrogen enhanced decohesion (HEDE), and adsorption induced dislocation emission (AIDE). The effects of microstructure (such as second phase, dislocation, and grain boundary) and environmental factors (including temperature, humidity, and strain rate) on the hydrogen embrittlement sensitivity of high-strength Al-alloy are analyzed and discussed. It is highlighted that the synergistic interactions of hydrogen and second phase with cracks during the hydrogen embrittlement process, as well as the coupling effects of various environmental factors on the hydrogen embrittlement sensitivity of high-strength aluminum alloys, are urgent issues that need to be addressed. Finally, it is worthy to point out that regulating the structure and number of irreversible hydrogen traps is one of the effective strategies to mitigate hydrogen embrittlement.

Key wordshigh strength Al-alloy    hydrogen embrittlement    hydrogen trapping    first-principles calculation
收稿日期: 2024-07-31      32134.14.1005.4537.2024.238
ZTFLH:  TG172  
基金资助:国家自然科学基金(52031007);国家自然科学基金(52171077)
通讯作者: 夏大海,E-mail:dahaixia@tju.edu.cn,研究方向为腐蚀电化学和局部腐蚀模拟仿真
Corresponding author: XIA Da-Hai, E-mail: dahaixia@tju.edu.cn
作者简介: 王明洋,男,2000年生,硕士生
图1  氢在金属中的位置和陷阱示意图[30]
图2  氢脆的混合机理示意图[39]
图3  不同回火温度高强马氏体的氢脆断裂形貌[43]
图4  不同均匀化温度样品的断口形貌[42]
图5  不同时效状态的样品的SSRT的应力-应变曲线和断口截面应力应变曲线,及欠时效,峰时效和过时效形貌[47]
图6  固溶温度对晶界原子偏析程度,延伸率损失和断裂模式的影响[48]
图7  不同热处理状态Al-Cu合金的氢热解吸曲线,XRD谱及 SSRT应力应变曲线[49]
图8  不同湿度下Al-Zn合金SSRT应力应变曲线和氢脆敏感性因子[52]
1 Campestrini P, van Westing E P M, van Rooijen H W, et al. Relation between microstructural aspects of AA2024 and its corrosion behaviour investigated using AFM scanning potential technique [J]. Corros. Sci., 2000, 42: 1853
2 Hirsch J. Recent development in aluminium for automotive applications [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1995
3 Li Y Y, Wang Q, Zhang H W, et al. Role of solute atoms and vacancy in hydrogen embrittlement mechanism of aluminum: a first-principles study [J]. Int. J. Hydrog. Energy, 2023, 48: 4516
4 Dwivedi S K, Vishwakarma M. Hydrogen embrittlement in different materials: a review [J]. Int. J. Hydrog. Energy, 2018, 43: 21603
5 Breen A J, Stephenson L T, Sun B H, et al. Solute hydrogen and deuterium observed at the near atomic scale in high-strength steel [J]. Acta Mater., 2020, 188: 108
6 Weng S, Meng C, Zhu J F, et al. Effect of fatigue damage under stress-controlled mode on the corrosion behavior of AA7075-T651 al-alloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1029
6 翁 硕, 孟 超, 朱江峰 等. 应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1029
7 Chen J F, Zhang X F, Zou L C, et al. Effect of precipitate state on the stress corrosion behavior of 7050 aluminum alloy [J]. Mater. Charact., 2016, 114: 1
8 Zhang M H, Liu S D, Jiang J Y, et al. Effect of Cu content on intergranular corrosion and exfoliation corrosion susceptibility of Al-Zn-Mg-(Cu) alloys [J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 1963
9 Chen S Y, Li J Y, Hu G Y, et al. Effect of Zn/Mg ratios on SCC, electrochemical corrosion properties and microstructure of Al-Zn-Mg alloy [J]. J. Alloy. Compd., 2018, 757: 259
10 Liu L, Cui X Y, Jiang J T, et al. Segregation of the major alloying elements to Al3(Sc, Zr) precipitates in an Al-Zn-Mg-Cu-Sc-Zr alloy [J]. Mater. Charact., 2019, 157: 109898
11 Xia P, Wang S C, Huang H L, et al. Effect of Sc and Zr additions on recrystallization behavior and intergranular corrosion resistance of Al-Zn-Mg-Cu alloys [J]. Materials, 2021, 14: 5516
12 Alexopoulos N D, Velonaki Z, Stergiou C I, et al. The effect of artificial ageing heat treatments on the corrosion-induced hydrogen embrittlement of 2024 (Al-Cu) aluminium alloy [J]. Corros. Sci., 2016, 102: 413
13 Song Y F, Ding X F, Xiao L R, et al. Effects of two-stage aging on the dimensional stability of Al-Cu-Mg alloy [J]. J. Alloy. Compd., 2017, 701: 508
14 Xu X H, Deng Y L, Pan Q L, et al. Enhancing the intergranular corrosion resistance of the Al-Mg-Si alloy with low Zn content by the interrupted aging treatment [J]. Metall. Mater. Trans., 2021, 52A: 4907
15 Han N M, Zhang X M, Liu S D, et al. Effects of retrogression and reaging on strength and fracture toughness of aluminum alloy 7050 [J]. Chin. J. Nonferrous Met., 2012, 22: 1871
15 韩念梅, 张新明, 刘胜胆 等. 回归再时效对7050铝合金强度和断裂韧性的影响 [J]. 中国有色金属学报, 2012, 22: 1871
16 Huang I W, Hurley B L, Yang F, et al. Dependence on temperature, pH, and Cl- in the uniform corrosion of aluminum alloys 2024-T3, 6061-T6, and 7075-T6 [J]. Electrochim. Acta, 2016, 199: 242
17 Song R G, Dietzel W, Zhang B J, et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2004, 52: 4727
18 Safyari M, Mori G, Ucsnik S, et al. Mechanisms of hydrogen absorption, trapping and release during galvanostatic anodization of high-strength aluminum alloys [J]. J. Mater. Res. Technol., 2023, 22: 80
19 Peng H, Cheng X Y, Li X L, et al. Effect of V and Nb on hydrogen traps in high strength low alloy steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 415
19 彭 浩, 程晓英, 李晓亮 等. 高强度低合金钢中V和Nb对氢陷阱的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 415
20 Johnson W H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids [J]. Proc. Roy. Soc. London, 1875, 23: 168
21 Negi A, Elkhodbia M, Barsoum I, et al. Coupled analysis of hydrogen diffusion, deformation, and fracture: a review [J]. Int. J. Hydrog. Energy, 2024, 82: 281
22 Wang Y F, Li Y Z, Huang Y T, et al. Effect of grain size on hydrogen embrittlement of 304L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 494
22 王艳飞, 李耀州, 黄玉婷 等. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 494
doi: 10.11902/1005.4537.2022.238
23 Śmiałowski M. Hydrogen in Steel [J]. New York: Pergamon Press, 1962
24 Chu W Y. Hydrogen Damage and Delayed Fracture [M]. Beijing: Metallurgical Industry Press, 1988
24 褚武扬. 氢损伤和滞后断裂 [M]. 北京: 冶金工业出版社, 1988
25 Fan Z B, Gao Z Y, Zong L J, et al. Corrosion behaviour and characteristics of 1050A Al-alloy exposed in typical atmospheres of Shandong Province [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1055
25 樊志彬, 高智悦, 宗立君 等. 1050A铝合金在山东不同典型环境中的大气腐蚀行为特征研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1055
doi: 10.11902/1005.4537.2023.321
26 Hirata K, Iikubo S, Koyama M, et al. First-principles study on hydrogen diffusivity in BCC, FCC, and HCP iron [J]. Metall. Mater. Trans., 2018, 49A: 5015
27 Hagi H, Hayashi Y. Effect of dislocation trapping on hydrogen and deuterium diffusion in iron [J]. Trans. Japan Inst. Met., 1987, 28: 368
28 Chu W Y, Qiao L J, Li J X, et al. Typical Systems of Hydrogen Embrittlement and Stress Corrosio [M]. Beijing: Science Press, 2013
28 褚武扬, 乔利杰, 李金许 等. 氢脆和应力腐蚀-典型体系 [M]. 北京: 科学出版社, 2013
29 Zhou X, Wu D K, Cheng X, et al. Research progress of detection techniques for permeated hydrogen [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1203
29 周 欣, 吴大康, 成 旭 等. 渗透氢检测方法研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1203
30 Pundt A, Kirchheim R. Hydrogen in metals: microstructural aspects [J]. Annu. Rev. Mater. Res., 2006, 36: 555
31 Pfeil L B. The effect of occluded hydrogen on the tensile strength of iron [J]. Proc. Roy. Soc., 1926, 112A: 182
32 Troiano A R. The role of hydrogen and other interstitials in the mechanical behavior of metals: (1959 edward de mille campbell memorial lecture) [J]. Metall. Microstruct. Anal., 2016, 5: 557
33 Oriani R A. A mechanistic theory of hydrogen embrittlement of steels [J]. Ber. Bunsenges. Phys. Chem., 1972, 76: 848
34 Zhao H, Chakraborty P, Ponge D, et al. Hydrogen trapping and embrittlement in high-strength Al alloys [J]. Nature, 2022, 602: 437
35 Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Trans., 1972, 3: 441
36 Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture [J]. Mater. Sci. Eng., 1994, 176A: 191
37 Sofronis P, Birnbaum H K. Hydrogen enhanced localized plasticity: a mechanism for hydrogen related fracture [A]. Proceedings of the 1993 ASME Winter Annual Meeting [C]. New Orleans, 1993
38 Lu G, Zhang Q, Kioussis N, et al. Hydrogen-enhanced local plasticity in aluminum: an ab initio study [J]. Phys. Rev. Lett., 2001, 87: 095501
39 Lynch S P. Mechanisms of hydrogen-assisted cracking [J]. Met. Forum, 1979, 2: 189
40 Daw M S, Baskes M I. Application of the embedded atom method to hydrogen embrittlement [A]. LatanisionRM, JonesRH. Chemistry and Physics of Fracture [M]. Dordrecht: Springer, 1987: 196
41 Lu G, Zhang Q, Kioussis N, et al. Hydrogen-enhanced local plasticity in aluminum: an ab initio study [J]. Phys. Rev. Lett., 2001, 87: 095501
42 Safyari M, Khossossi N, Meisel T, et al. New insights into hydrogen trapping and embrittlement in high strength aluminum alloys [J]. Corros. Sci., 2023, 223: 111453
43 Lynch S P. Environmentally assisted cracking: overview of evidence for an adsorption-induced localised-slip process [J]. Acta Metall., 1988, 36: 2639
44 Yamaguchi M, Tsuru T, Ebihara K I, et al. Hydrogen trapping in Mg2Si and Al7FeCu2 intermetallic compounds in aluminum alloy: first-principles calculations [J]. Mater. Trans., 2020, 61: 1907
45 Ji Y C, Dong C F, Wei X, et al. Discontinuous model combined with an atomic mechanism simulates the precipitated η′ phase effect in intergranular cracking of 7-series aluminum alloys [J]. Comp. Mater. Sci., 2019, 166: 282
46 Tsuru T, Yamaguchi M, Ebihara K, et al. First-principles study of hydrogen segregation at the MgZn2 precipitate in Al-Mg-Zn alloys [J]. Comp. Mater. Sci., 2018, 148: 301
47 Chen M Y, Liu S D, He K Z, et al. Hydrogen-induced failure in a partially-recrystallized Al-Zn-Mg-Cu alloy with different aging conditions: influence of deformation behavior dominated by microstructures [J]. Mater. Des., 2023, 233: 112199
48 Moshtaghi M, Safyari M, Hojo T. Effect of solution treatment temperature on grain boundary composition and environmental hydrogen embrittlement of an Al-Zn-Mg-Cu alloy [J]. Vacuum, 2021, 184: 109937
49 Safyari M, Moshtaghi M, Kuramoto S, et al. Influence of microstructure-driven hydrogen distribution on environmental hydrogen embrittlement of an Al-Cu-Mg alloy [J]. Int. J. Hydrog. Energy, 2021, 46: 37502
50 De Francisco U, Larrosa N O, Peel M J. The influence of temperature on hydrogen environmentally assisted cracking of AA7449-T7651 in moist air [J]. Corros. Sci., 2021, 180: 109199
51 Tang J W, Wang Y F, Fujihara H, et al. Stress corrosion cracking induced by the combination of external and internal hydrogen in Al-Zn-Mg-Cu alloy [J]. Scr. Mater., 2024, 239: 115804
52 Safyari M, Hojo T, Moshtaghi M. Effect of environmental relative humidity on hydrogen-induced mechanical degradation in an Al-Zn-Mg-Cu alloy [J]. Vacuum, 2021, 192: 110489
53 Taheri M, Albrecht J, Bernstein I, et al. Strain-rate effects on hydrogen embrittlement of 7075 aluminum [J]. Scr. Metall., 1979, 13: 871
54 Gest R J, Troiano A R. Stress corrosion and hydrogen embrittlement in an aluminum alloy [J]. Corrosion, 1974, 30: 274
[1] 刘天乐, 韦博鑫, 付安庆, 苏航, 陈廷枢, 王超明, 王邃. 掺氢环境下X80管线钢气相氢损伤研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[2] 张慧云, 郑留伟, 梁伟. 退火工艺对304奥氏体不锈钢的组织演变及氢脆行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[3] 陈锴, 杜一帆, 徐浩昀, 吕良, 党桂铭, 王玉金, 郑树启. X80管线钢氢渗透行为及氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[4] 李新城, 李兆南, 王海锋, 徐云泽, 王明昱, 甄兴伟. DH36海洋工程钢焊接结构的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[5] 崔博伦, 赵杰, 吕冉, 李敬法, 宇波, 闫东雷. 掺氢天然气输送管材氢脆与腐蚀复合防护技术研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 327-337.
[6] 张倩茹, 孙擎擎. 氢促进局部塑性变形理论的发展趋势[J]. 中国腐蚀与防护学报, 2025, 45(2): 271-282.
[7] 万红江, 明洪亮, 王俭秋, 韩恩厚. H2O2CO掺杂对X52管线钢氢脆敏感性影响研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 371-380.
[8] 程凯源, 彭杨, 黄峰, 程向龙, 徐云峰, 彭志贤, 刘静. 典型无缝钢管钢掺氢天然气环境适应性及氢致损伤机理[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
[9] 陈郑, 宇文佩, 温思涵, 李美凤, 沙江波, 周春根. B添加对MoSi2 基化合物抗氧化性能影响的第一性原理研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 224-230.
[10] 李鑫, 韦博鑫, 鲁仰辉, 孙晨, 于文涛, 徐猛, 刘伟. 临氢环境下管线钢氢损伤机理研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1125-1133.
[11] 徐云峰, 王少峰, 何龙, 刘冬, 黄峰, 刘静. EPS处理对QStE700TM钢氢脆敏感性影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 691-699.
[12] 王艳飞, 李耀州, 黄玉婷, 谢宏琳, 吴炜杰. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[13] 王贞, 刘静, 张施琦, 黄峰. 应变速率对预充氢DP780钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 106-112.
[14] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[15] 张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.