Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 497-504     CSTR: 32134.14.1005.4537.2023.108      DOI: 10.11902/1005.4537.2023.108
  研究报告 本期目录 | 过刊浏览 |
塑性变形加工对纯锌在天津土壤浸出液中腐蚀行为的影响
李文杰1, 车晓钰1, 唐永存1, 刘光明2(), 田文明3, 何华林4, 刘晨辉2
1.国网天津市电力公司 天津 300010
2.南昌航空大学材料科学与工程学院 南昌 330063
3.北华航天工业学院材料工程学院 廊坊 065000
4.成都诺嘉伟业科技有限公司 成都 611330
Effect of Plastic Deformation Processing on Corrosion Behavior of Pure Zinc in a Leaching Solution of Soil at Tianjin
LI Wenjie1, CHE Xiaoyu1, TANG Yongcun1, LIU Guangming2(), TIAN Wenming3, HE Hualin4, LIU Chenhui2
1.State Grid Tianjin Electric Power Company, Tianjin 300010, China
2.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
3.School of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China
4.Chengdu Great Norga Science and Technology Co., Ltd., Chengdu 611330, China
引用本文:

李文杰, 车晓钰, 唐永存, 刘光明, 田文明, 何华林, 刘晨辉. 塑性变形加工对纯锌在天津土壤浸出液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 497-504.
Wenjie LI, Xiaoyu CHE, Yongcun TANG, Guangming LIU, Wenming TIAN, Hualin HE, Chenhui LIU. Effect of Plastic Deformation Processing on Corrosion Behavior of Pure Zinc in a Leaching Solution of Soil at Tianjin[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 497-504.

全文: PDF(15815 KB)   HTML
摘要: 

由热挤压获得了不同变形加工量的工业纯锌棒材,通过电化学测试、浸泡加速腐蚀实验及金相表征研究了变形加工量对纯锌微观组织及腐蚀特性的影响。结果表明:铸造纯锌金相组织较为粗大,粗晶粒内部存在大量细小亚晶粒及铸造孪晶。随塑性变形加工量的增加,纯锌的初级晶粒会显著细化,亚晶粒会融合长大,孪晶显著减少直至消失。在土壤浸出液中纯锌的点蚀电位及钝化区间随变形量的增加而增大,腐蚀电流密度及维钝电流密度则呈减小趋势,塑性变形处理提升了纯锌的钝化膜电阻及腐蚀反应中的电荷转移电阻。纯锌的金相组织均匀性随塑性变形量的增加持续改善,进而显著提升了纯锌在土壤浸出液中的耐蚀能力。

关键词 纯锌塑性加工金相组织电化学土壤腐蚀    
Abstract

Pure zinc bars with different deformation degree were prepared by hot rolling. The effect of deformation degree on the microstructure and corrosion properties of pure zinc in a leaching solution of soil at Tianjin were studied by electrochemical test, immersion accelerating corrosion test and metallographic characterization. The results showed that the cast pure zinc had a coarse microstructure with a large number of fine sub-grains and casting twins. The primary grains of zinc were obviously refined, while the sub-grains were merged and grown with the increase of plastic deformation degree. The cast twins were significantly reduced as the deformation degree increased. The pitting potential and passivation interval of pure zinc in the soil leaching solution increased with the increase of deformation degree. While the corrosion current density and passivation current density decreased as the deformation degree increased. The resistance of passive film and the charge transfer resistance of corrosion process of zinc obviously increased after plastic deformation treatment. The continuously improved metallographic homogeneity of pure zinc, which resulted from the increased plastic deformation degree could enhance the corrosion resistance of pure zinc in the soil leaching solution.

Key wordspure zinc    plastic processing    metallographic structure    electrochemistry    soil corrosion
收稿日期: 2023-04-13      32134.14.1005.4537.2023.108
ZTFLH:  TG172  
基金资助:国家自然科学基金(51961028)
通讯作者: 刘光明,E-mail: gemliu@126.com,研究方向为材料的腐蚀与防护
Corresponding author: LIU Guangming, E-mail: gemliu@126.com
作者简介: 李文杰,男,1990年生,硕士,工程师
图1  不同变形加工量处理后的1#~4#纯锌试样典型金相形貌
图2  不同变形加工量处理后的1#~4#纯锌晶粒/亚晶粒尺寸分布区间
图3  不同变形加工量处理后的1#~4#纯锌OCP测试曲线
图4  不同变形加工量处理后的1#~4#纯锌动电位极化曲线

Numbering

of zinc

Ecorr

mVSCE

ba

mV/dec

-bc

mV/dec

Icorr

μA/cm2

Epit

mVSCE

Ipass

μA/cm2

1#-1078 ± 19415 ± 105174 ± 229.25 ± 1.38-869 ± 7311.25 ± 1.49
2#-1087 ± 23557 ± 133193 ± 314.96 ± 0.97-818 ± 625.32 ± 0.88
3#-1082 ± 18726 ± 189188 ± 254.18 ± 0.89-635 ± 594.78 ± 0.82
4#-1088 ± 17806 ± 177196 ± 352.14 ± 0.68-537 ± 512.77 ± 0.73
表1  不同变形加工量处理后的1#~4#纯锌动电位极化曲线Tafel拟合结果
图5  不同变形加工量处理后的1#~4#纯锌EIS测试曲线
图6  拟合EIS图谱的等效电路
Numbering of zinc1#2#3#4#
Rhf / Ω·cm23105 ± 5835796 ± 86510893 ± 163417680 ± 1993
Rct / Ω·cm22070 ± 4137645 ± 9098546 ± 11929827 ± 1336
表2  EIS拟合的Rhf及Rct值
图7  1#~4#纯锌试样在土壤浸出液中浸泡30 d后的腐蚀形貌
1 Liu L B, Kang Y L, Song R B, et al. Corrosion behavior of 1000 MPa grade ultra-high strength hot-dip galvanized steel sheets[J]. Corros. Prot., 2019, 40: 723
1 刘李斌, 康永林, 宋仁伯 等. 1000 MPa级超高强度热镀锌钢板耐腐蚀性能[J]. 腐蚀与防护, 2019, 40: 723
2 Yin J X, Wang X, Ge F, et al. Effects of NH4+ and NO3- on corrosion behavior of pure zinc in NaCl solution[J]. Trans. Mater. Heat Treat., 2020, 41(3): 82
2 殷佳璇, 王 昕, 葛 峰 等. NH4+和NO3-对纯锌在NaCl溶液中腐蚀行为的影响[J]. 材料热处理学报, 2020, 41(3): 82
doi: 10.13289/j.issn.1009-6264.2019-0412
3 Wu H C, Chen G X, Yu H T, et al. Characterization of microstructure of deformation twin boundary in zinc by transmission electron microscopy[J]. Anal. Test. Technol. Instrum., 2022, 28: 247
3 吴海辰, 陈国新, 于海涛 等. 纯锌中变形孪晶界精细结构的透射电子显微镜表征[J]. 分析测试技术与仪器, 2022, 28: 247
4 Gao Z Y, Jiang B, Fan Z B, et al. Corrosion behavior of typical grounding materials in artificial alkaline soil solution[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 191
4 高智悦, 姜 波, 樊志彬 等. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43: 191
doi: 10.11902/1005.4537.2022.061
5 Ji P, Yu C M, Huang W, et al. Analysis of corrosion resistance on Hot-Dip Pure Zinc Coating, Zn-Fe alloy coating and zinc-aluminum-magnesium coating[J]. Mater. Prot., 2022, 55(2): 95
5 冀 鹏, 于春满, 黄 伟 等. 热镀纯锌、锌铁合金及锌铝镁镀层的耐蚀性分析[J]. 材料保护, 2022, 55(2): 95
6 Yuan C, Li H X, Feng T T, et al. Investigations on the corrosion properties of uncoated, Al-Si coated and hot-dip pure zinc coated hot-stamped steel plates[J]. Mater. Prot., 2022, 55(3): 14
6 袁 超, 李华鑫, 冯婷婷 等. 热成型钢板、铝硅镀层钢板和热镀纯锌镀层钢板的耐蚀性研究[J]. 材料保护, 2022, 55(3): 14
7 Wang Y, Guo C, Kong D C, et al. Microstructures and corrosion failure analysis of zinc anode[J]. Powder Metall. Technol., 2018, 36: 348
7 王 琰, 郭 淳, 孔德成 等. 锌阳极的微观组织和腐蚀失效分析[J]. 粉末冶金技术, 2018, 36: 348
8 Cao R H. Preparation, microstructure and properties of zinc based alloys for medical use[D]. Nanjing: Southeast University, 2018
8 曹瑞桦. 医用锌基合金制备、组织与性能研究[D]. 南京: 东南大学, 2018
9 Tian W M, Tian W Q, Li Z L, et al. Growth dynamics of stable pitting corrosion on SS304 stainless steel and associated measurement of pit inner environment[J]. Trans. Mater. Heat Treat., 2021, 42(9): 119
9 田文明, 田文庆, 李忠磊 等. 304不锈钢稳态点蚀生长动力学及孔内环境测定[J]. 材料热处理学报, 2021, 42(9): 119
doi: 10.13289/j.issn.1009-6264.2021-0139
10 Gao Y B, Du X G, Wang Q W, et al. Corrosion behavior of copper in a simulated grounding condition in electric power grid[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 435
10 高义斌, 杜晓刚, 王启伟 等. 铜在电网接地工况下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43: 435
doi: 10.11902/1005.4537.2022.098
11 Bednarczyk W, Kawałko J, Wątroba M, et al. Microstructure and mechanical properties of a Zn-0.5Cu alloy processed by high-pressure torsion[J]. Mater. Sci. Eng., 2020, 776A: 139047
12 Mollaei N, Fatemi S M, Aboutalebi M R, et al. Dynamic recrystallization and deformation behavior of an extruded Zn-0.2 Mg biodegradable alloy[J]. J. Mater. Res. Technol., 2022, 19: 4969
doi: 10.1016/j.jmrt.2022.06.159
13 Zhang W Y, Zhang T, Zhu Z X, et al. Corrosion electrochemistry properties of thermally sprayed Zn-Cu-Ti coating in simulated ocean atmosphere[J]. J. Mater. Res. Technol., 2022, 21: 3235
doi: 10.1016/j.jmrt.2022.10.108
14 Malla A D, Sullivan J H, Penney D J, et al. Mechanistic study on the corrosion behaviour of Zinc and Zinc-Calcium alloys designed for enhanced metallic coatings in the presence of chloride and phosphate ions[J]. Corros. Sci., 2023, 213: 110956
doi: 10.1016/j.corsci.2022.110956
15 Hybasek V, Kubasek J, Capek J, et al. Influence of model environment complexity on corrosion mechanism of biodegradable zinc alloys[J]. Corros. Sci., 2021, 187: 109520
doi: 10.1016/j.corsci.2021.109520
16 Luo W H, Wang H T, Yu L, et al. Effect of Zn content on the electrochemical properties of Al-Zn-In-Mg sacrificial anode alloy[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1071
16 罗维华, 王海涛, 于 林 等. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43: 1071
doi: 10.11902/1005.4537.2022.356
17 Ayoola A A, Durodola B M, Babalola R, et al. Corrosion inhibitive effects of calcium-modified zinc phosphate coating on A36 mild steel[J]. Results Eng., 2023, 17: 100880
doi: 10.1016/j.rineng.2023.100880
18 Oliveira J L, Skilbred A W B, Loken A, et al. Effect of accelerated ageing procedures and flash rust inhibitors on the anti-corrosive performance of epoxy coatings: EIS and dynamic-mechanical analysis[J]. Prog. Org. Coat., 2021, 159: 106387
19 Jain D, Pareek S, Agarwala A, et al. Effect of exposure time on corrosion behavior of zinc-alloy in simulated body fluid solution: Electrochemical and surface investigation[J]. J. Mater. Res. Technol., 2021, 10: 738
doi: 10.1016/j.jmrt.2020.12.050
[1] 师超, 李嘉浩, 王荣祥, 张博, 周兰欣, 刘光明, 邵亚薇. 不同偏压对45#钢电弧离子镀铝层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[2] 王彤彤, 张隽睿, 高云, 高荣杰. NH4F-(NH4)2SO4 复合电解液中制备莲藕状TiO2 纳米管阵列及光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 389-395.
[3] 常雪婷, 宋嘉琪, 王冰, 王东胜, 陈文聪, 王海丰. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[4] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[5] 王靖羽, 周学杰, 王洪伦, 吴军, 陈昊, 郑鹏华. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[6] 卞亚飞, 汤文明, 张洁, 毛锐锐, 缪春辉, 陈国宏. 安徽省电网接地材料Q235钢的土壤腐蚀特性及规律性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 130-140.
[7] 白雪寒, 丁康康, 张彭辉, 范林, 张慧霞, 刘少通. AH36船用钢海水加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[8] 王鹏杰, 宋昱灏, 樊林, 邓宽海, 李忠慧, 梅宗斌, 郭雷, 林元华. 新型高效咪唑希夫碱缓蚀剂对Q235钢在1 mol/L HCl溶液中的缓蚀作用[J]. 中国腐蚀与防护学报, 2024, 44(1): 59-70.
[9] 何逸, 郑传波, 戚浩宇, 刘珍光. TP2紫铜在工业环境中腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 71-81.
[10] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[11] 王泉润, 侯进, 侯保荣, 田惠文. 气相缓蚀剂分析方法研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1189-1202.
[12] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[13] 张勤号, 朱泽洁, 蔡浩冉, 李鑫冉, 孟宪泽, 李昊, 伍廉奎, 罗荘竹, 曹发和. Pt/IrO x -pH超微电化学传感器性能探究及其在铜/不锈钢电偶腐蚀研究中的应用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[14] 刘微. 测量不锈钢电化学噪声的非对称表面方法[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[15] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.