Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (4): 1047-1054     CSTR: 32134.14.1005.4537.2023.338      DOI: 10.11902/1005.4537.2023.338
  轻质合金腐蚀与防护专栏 本期目录 | 过刊浏览 |
中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究
乔泽1, 李清泉2, 刘晓航3, 李燚周3()
1.福建福清核电有限公司 福清 350318
2.江苏核电有限公司 连云港 222042
3.中国海洋大学材料科学与工程学院 青岛 266100
Effect of Nitrate and Galvanic Couple on Crevice Corrosion Behavior of 7075-T651 Al-alloy in Neutral NaCl Solution
QIAO Ze1, LI Qingquan2, LIU Xiaohang3, LI Yizhou3()
1. Fujian Fuqing Nuclear Power Co., Ltd., Fuqing 350318, China
2. Jiangsu Nuclear Power Co., Ltd., Lianyungang 222042, China
3. School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
引用本文:

乔泽, 李清泉, 刘晓航, 李燚周. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
Ze QIAO, Qingquan LI, Xiaohang LIU, Yizhou LI. Effect of Nitrate and Galvanic Couple on Crevice Corrosion Behavior of 7075-T651 Al-alloy in Neutral NaCl Solution[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 1047-1054.

全文: PDF(13831 KB)   HTML
摘要: 

采用电化学测试、共聚焦显微镜、扫描电子显微镜等手段,研究硝酸根和电偶对7075-T651高强铝合金缝隙腐蚀行为影响。结果表明,硝酸根作为氧化剂能促进铝合金表面形成保护性的氧化膜,有效抑制铝合金的腐蚀。然而,当存在缝隙结构时,在没有硝酸根的溶液中,缝隙内没有发生明显腐蚀现象。而在含有硝酸根溶液中,硝酸根还原产生的氨气将富集在缝隙内,并选择性溶解含铜颗粒,诱发缝隙内点蚀形核,促进缝隙腐蚀发展。与304不锈钢偶接后,使缝隙内外电极之间产生较大的电偶腐蚀驱动力,加速缝隙内金属溶解及溶液劣化过程,从而导致更严重的缝隙腐蚀。

关键词 7075-T651铝合金304不锈钢电偶腐蚀缝隙腐蚀    
Abstract

The effect of the presence of nitrate and galvanic couple on the crevice corrosion behavior of 7075-T651 Al-alloy in 3.5%NaCl solution is investigated by the electrochemical tests and surface analysis techniques. The results indicate that the nitrate as an oxidizing agengt could promote the formation of passive film, so that inhibit the corrosion of the Al-alloy. However, when there is a formed crevice on the Al-alloy in a solution without nitrate, inside the crevice corrosion is hard to occur and develop, in the contrast, in a solution with the presence of nitrate, which could be reduced forming NH3, the later agent may accumulate inside the crevice and selectively dissolve the copper particles, thereby induced the nucleation of pitting corrosion, afterwards, further promoted the propagation of crevice corrosion. After coupling with 304 stainless steel, a large Galvano-corrosion driving force is generated between the electrodes inside and outside the crevice, which accelerates the metal dissolution and solution deterioration process in the crevice, resulting in much more serious crevice corrosion in the solution with nitrate.

Key words7075-T651 Al-alloy    304 stainless steel    galvanic corrosion    crevice corrosion
收稿日期: 2023-10-26      32134.14.1005.4537.2023.338
ZTFLH:  TG172  
基金资助:国家自然科学基金(51901217)
通讯作者: 李燚周,E-mail: liyizhou@ouc.edu.cn,研究方向为材料腐蚀与防护
Corresponding author: LI Yizhou, E-mail: liyizhou@ouc.edu.cn
作者简介: 乔 泽,男,1990年生,工程师
图1  7075-T651铝合金微观组织及金属间化合物的分布[6]
图2  缝隙结构示意图[17]
图3  7075-T651铝合金在含有0%和1%NaNO3溶液中浸泡不同时间的极化曲线
图4  在含有0%和1%NaNO3溶液中同种/异种金属接触缝隙内外电极OCP随时间变化
图5  为同种/异种金属接触缝隙内外电极电位差
图6  含有0%和1%NaNO3溶液中同种/异种金属缝隙试样腐蚀72 h后缝隙内外电极宏观腐蚀形貌
图7  含有0%和1%NaNO3溶液中7075-7075和7075-304两种缝隙试样腐蚀72 h后缝隙内铝合金微观腐蚀形貌
图8  含有0%和1%NaNO3溶液中7075-7075和7075-304两种缝隙试样腐蚀72 h后缝隙内电极表面腐蚀形貌3D轮廓图
图9  含有硝酸钠溶液中7075-T651高强铝合金缝隙腐蚀机理图
[1] Ma Z B, Wang Z T. Construction and aluminum materials of China's clean nuclear power stations [J]. Light Alloy Fabri. Technol., 2018, 46(11): 8
[1] 马振波, 王祝堂. 中国清洁核电站建设及其所用铝材 [J]. 轻合金加工技术, 2018, 46(11): 8
[2] Cong F G, Zhao G, Tian N, et al. Research progress and development trend of strengthening-toughening of ultra-high strength 7××× aluminum alloy [J]. Light Alloy Fabri. Technol., 2012, 40(10): 23
[2] 丛福官, 赵 刚, 田 妮 等. 7×××系超高强铝合金的强韧化研究进展及发展趋势 [J]. 轻合金加工技术, 2012, 40(10): 23
[3] Cai J M, Guan L, Li Y, et al. Galvanic corrosion and protection of joints between steel and aluminum alloy in automobiles [J]. Corros. Prot., 2022, 43: 1
[3] 蔡建敏, 关 蕾, 李 雨 等. 车用钢-铝合金连接的电偶腐蚀及防护 [J]. 腐蚀与防护, 2022, 43: 1
[4] Liu J H, Li D, Liu P Y. Effect of heat treatment on stress corrosion behavior of 7075 aluminum alloy [J]. Trans. Mater. Heat Treat., 2010, 31(7): 109
[4] 刘继华, 李 荻, 刘培英. 热处理对7075铝合金应力腐蚀及断口形貌的影响 [J]. 材料热处理学报, 2010, 31(7): 109
[5] Lv Z P, Li Y, Liu X H, et al. Synergistic inhibition effect of thiourea and sodium nitrate on crevice corrosion of 7075 Al-alloy in acidic sodium chloride solution [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1367
[5] 吕正平, 李 缘, 刘晓航 等. 酸性氯化钠溶液中硝酸钠和硫脲对7075铝合金缝隙腐蚀的协同缓蚀作用 [J]. 中国腐蚀与防护学报, 2023, 43: 1367
doi: 10.11902/1005.4537.2022.365
[6] Liu X H, Li Y Z, Lei L, et al. The effect of nitrate on the corrosion behavior of 7075-T651 aluminum alloy in the acidic NaCl solution [J]. Mater. Corros., 2021, 72: 1478
[7] Zheng X Z, Castaneda H, Gao H J, et al. Synergistic effects of corrosion and slow strain rate loading on the mechanical and electrochemical response of an aluminium alloy [J]. Corros. Sci., 2019, 153: 53
[8] Sun S Q, Zhao Y B, Zheng Q F, et al. Evolution mechanism of pitting of Al Clad 7075 and 2024 aluminium alloy in coastal environment [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 195|
[8] 孙霜青, 赵予兵, 郑弃非 等. 包铝的7075和2024合金在海洋大气环境中的点蚀演化机制 [J]. 中国腐蚀与防护学报, 2012, 32: 195
[9] Liu J, Zhang P. Corrosion behavior of anodic oxide film on aluminum alloy [J] Mater. Prot., 2013, 46(8): 56
[9] 刘 静, 张 鹏. 7075铝合金阳极氧化膜的腐蚀行为 [J]. 材料保护, 2013, 46(8): 56
[10] Deyab M A, El-Rehim S S A, Hassan H H, et al. Impact of rare earth compounds on corrosion of aluminum alloy (AA6061) in the marine water environment [J]. J. Alloy. Compd., 2020, 820: 153428
[11] Li J, Sun J, An C Q. Research progress of fluoroaluminate transformation treatment technology on aluminum and its alloys [J]. Surf. Technol., 2008, 37(4): 60
[11] 李 季, 孙 杰, 安成强. 铝合金无铬钝化的研究进展 [J]. 表面技术, 2008, 37(4): 60
[12] Li S Y, Church B C. Effects of sulfate and nitrate anions on aluminum corrosion in slightly alkaline solution [J]. Appl. Surf. Sci., 2018, 440: 861
[13] Gao M H, Zhang S D, Yang B J, et al. Prominent inhibition efficiency of sodium nitrate to corrosion of Al-based amorphous alloy [J]. Appl. Surf. Sci., 2020, 530: 147211
[14] Pyun S I, Moon S M. The inhibition mechanism of pitting corrosion of pure aluminum by nitrate and sulfate ions in neutral chloride solution [J]. J. Solid. State. Electrochem., 1999, 3: 331
[15] Blanc C, Gastaud S, Mankowski G. Mechanistic studies of the corrosion of 2024 aluminum alloy in nitrate solutions [J]. J. Electrochem. Soc., 2003, 150: B396
[16] McIntyre J F, Dow T S. Intergranular corrosion behavior of aluminum alloys exposed to artificial seawater in the presence of nitrate anion [J]. Corrosion, 1992, 48: 309
[17] Mu J, Li Y Z, Wang X. Crevice corrosion behavior of X70 steel in NaCl solution with different pH [J]. Corros. Sci., 2021, 182: 109310
[18] Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
[1] 于佳汇, 王彤彤, 高云, 高荣杰. Bi2S3/TiO2 纳米复合材料的制备及其对304不锈钢的光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 901-908.
[2] 翁硕, 孟超, 朱江峰, 王艾, 常馨, 康妘, 何小田, 赵礼辉. 应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1029-1037.
[3] 叶梦颖, 于佳汇, 王彤彤, 高荣杰. Bi2S3/CdS/TiO2 纳米复合材料的制备及对304不锈钢的光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 372-380.
[4] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[5] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[6] 张勤号, 朱泽洁, 蔡浩冉, 李鑫冉, 孟宪泽, 李昊, 伍廉奎, 罗荘竹, 曹发和. Pt/IrO x -pH超微电化学传感器性能探究及其在铜/不锈钢电偶腐蚀研究中的应用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[7] 吕正平, 李缘, 刘晓航, 崔中雨, 崔洪芝, 王昕, 逄昆, 李燚周. 酸性氯化钠溶液中硝酸钠和硫脲对7075铝合金缝隙腐蚀的协同缓蚀作用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[8] 李敏, 胡凌越, 胡科峰, 宋遥, 张泽群, 李宗欣, 张博威, 董超芳, 吴俊升. 316L不锈钢在深海环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[9] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[10] 邢少华, 刘仲晔, 刘近增, 白舒宇, 钱峣, 张大磊. ZCuSn5Pb5Zn5/B10偶对在流动海水中的腐蚀规律与机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[11] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[12] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[13] 白一涵, 张航, 朱泽洁, 王疆瑛, 曹发和. 缝隙腐蚀内部微区离子浓度监测的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[14] 倪雨朦, 于英杰, 严慧, 王嵬, 李瑛. 铜铝/镍石墨可磨耗封严涂层相选择性溶解机制有限元研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[15] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.