Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (4): 883-890     CSTR: 32134.14.1005.4537.2023.296      DOI: 10.11902/1005.4537.2023.296
  研究报告 本期目录 | 过刊浏览 |
涂覆有机涂层的镀锡薄钢板耐蒸煮性能电化学快速检测技术研究
刘喆1, 邓成满1, 魏军胜2, 夏大海1()
1.天津大学材料科学与工程学院 天津 300350
2.宝山钢铁股份有限公司 上海 201900
Fast Evaluation of Resistance to High Temperature Steam Sterilization Process for Organic Coating Coated Tinplate by Electrochemical Method
LIU Zhe1, DENG Chengman1, WEI Junsheng2, XIA Da-Hai1()
1. School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
2. Baoshan Iron & Steel Co., Ltd., Shanghai 201900, China
引用本文:

刘喆, 邓成满, 魏军胜, 夏大海. 涂覆有机涂层的镀锡薄钢板耐蒸煮性能电化学快速检测技术研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
Zhe LIU, Chengman DENG, Junsheng WEI, Da-Hai XIA. Fast Evaluation of Resistance to High Temperature Steam Sterilization Process for Organic Coating Coated Tinplate by Electrochemical Method[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 883-890.

全文: PDF(8840 KB)   HTML
摘要: 

采用阴极极化和电化学阻抗谱相结合的方法评价了聚酯、环氧酚醛和环氧氨基涂层涂覆镀锡薄钢板在127℃水蒸气中的耐蒸煮性能,并探讨了耐蒸煮机制。结果表明,阴极极化电流可以有效区分食品包装用涂层镀锡薄钢板的防护性能,阴极极化电流越大,涂层防护性能越差。环氧酚醛涂层的耐蚀性最好,环氧氨基涂层次之,聚酯涂层的耐蚀性最差。经127℃高温蒸煮1 h后,涂层/镀锡薄钢板体系在3.5%NaCl溶液中的防护性能有所下降,低频阻抗模值有所减小,最小值为5.4%,最大值为69.7%。总体来看,3种涂层的耐蒸煮性能相当。涂层/金属间的结合力、涂层的润湿性是影响耐蒸煮性能的主要参数,结合力越好,涂层的润湿性越差,耐蒸煮性能越好。

关键词 镀锡薄钢板电化学阻抗谱阴极极化快速评价    
Abstract

The resistance to high temperature steam sterilization process of tinplate coated with polyester, epoxy-phenolic and epoxy-amino coating respectively was studied by cathodic polarization and electrochemical impedance spectroscopy (EIS), and then the relevant mechanism was also discussed. The results showed that the cathodic polarization current can effectively distinguish the protective properties of coated tinplate for food packaging, and the higher the cathodic polarization current, the worse the protective properties of the coating. The corrosion resistance of epoxy phenolic coating is the best, followed by the epoxy amino paint, and that of polyester coating is the worst. After high temperature steam sterilization at 127oC for 1 h, the protection performance of the coated tinplate in 3.5%NaCl solution decreased, and the low-frequency impedance modulus decreased, namely the minimum value was 5.4% and the maximum was 69.7%. Overall, the resistance to high temperature steam sterilization of the three coatings was similar. The bonding strength between the coating/ tinplate and the wettability of the coating were the main parameters that affect its resistance to high temperature steam sterilization process. The better the bonding strength and the worse the wettability of the coating, the better the resistance to the high temperature steam sterilization process.

Key wordstinplate    electrochemical impedance spectroscopy    cathodic polarization    fast evaluation
收稿日期: 2023-09-18      32134.14.1005.4537.2023.296
ZTFLH:  O646  
基金资助:宝山钢铁股份有限公司项目
通讯作者: 夏大海,E-mail:dahaixia@tju.edu.cn,研究方向为腐蚀电化学和局部腐蚀模拟仿真
Corresponding author: XIA Dahai, E-mail: dahaixia@tju.edu.cn
作者简介: 刘 喆,女,2000年生,硕士生
Steel grade

Sample No.

(without boiling sterilization)

Sample No.

(with boiling sterilization)

Coating type
TH435A1-0A1-1Polyester-BPA-NI paint
TH415B1-0B1-1
TH550C1-0C1-1
TH550D1-0D1-1
TH435A2-0A2-1Epoxy Phenolic Coating
TH415B2-0B2-1
TH550C2-0C2-1
TH550D2-0D2-1
TH435A3-0A3-1Epoxy amino paint
TH415B3-0B3-1
TH550C3-0C3-1
TH550D3-0D3-1
表1  涂覆有机涂层的镀锡板的试样编号
图1  蒸煮前后12种样品的阴极极化曲线的对比结果
图2  3种涂覆涂层的镀锡板的耐蒸煮前后-1.4 VSCE的阴极电流对比结果
图3  蒸煮前后涂覆涂层的镀锡板样品的EIS测试结果
Sample No.OCP|Z|0.01 HzSample No.OCP|Z|0.01 HzReduction of |Z|0.01 Hz
VSCE105 Ω⸱cm2VSCE105 Ω⸱cm2
A1-0-0.4901.810A1-1-0.5031.33026.5%
A2-0-0.546199.0A2-1-0.525153.023.1%
A3-0-0.48478.00A3-1-0.52837.7051.7%
B1-0-0.4991.110B1-1-0.5180.87521.2%
B2-0-0.53880.20B2-1-0.65563.9020.3%
B3-0-0.52293.90B3-1-0.55252.1044.5%
C1-0-0.4822.740C1-1-0.4780.76172.2%
C2-0-0.554167.0C2-1-0.529158.05.4%
C3-0-0.53070.70C3-1-0.48768.103.7%
D1-0-0.5113.090D1-1-0.5370.93569.7%
D2-0-0.547397.0D2-1-0.534130.067.3%
D3-0-0.546149.0D3-1-0.56064.2056.9%
表2  蒸煮前后涂覆涂层的镀锡板的腐蚀电位和低频阻抗模值
图4  涂覆涂层的镀锡板样品蒸煮前后的表面形貌对比
图5  A1、A2、A3样品蒸煮前后的截面形貌及能谱分析
[1] Xia D H, Song S Z, Wang J H, et al. Research progress on corrosion mechanism of tinned steel sheet used for food parkaging [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 513
[1] 夏大海, 宋诗哲, 王吉会 等. 食品包装用镀锡薄钢板的腐蚀机理研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 513
doi: 10.11902/1005.4537.2016.225
[2] Xia D H, Song S Z, Wang J H, et al. Corrosion behavior of tinplates in a functional beverage [J]. Acta Phys. Chim. Sin., 2012, 28: 121
[2] 夏大海, 宋诗哲, 王吉会 等. 镀锡薄钢板在功能饮料中的腐蚀行为 [J]. 物理化学学报, 2012, 28: 121
[3] Deng C M, Zhu Y, Sun S K, et al. Analysis of failure causes of epoxy-phenolic coated tinplate after boiling sterilization [J]. Eng. Fail. Anal., 2022, 135: 106129
[4] Xia D H, Deng C M, Macdonald D, et al. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review [J]. J. Mater. Sci. Technol., 2022, 112: 151
[5] Xia D H, Song S Z, Wang J H, et al. Corrosion behavior of tinplate in NaCl solution [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 717
[6] Xia D H, Song Y, Song S Z, et al. Identifying defect levels in organic coatings with electrochemical noise (EN) measured in Single Cell (SC) mode [J]. Prog. Org. Coat., 2019, 126: 53
[7] Xia D H, Song S Z, Wang J H, et al. Corrosion detection of metal cans for beverage packaging [J]. CIESC J., 2012, 63: 1797
doi: 10.3969/j.issn.0438-1157.2012.06.020
[7] 夏大海, 宋诗哲, 王吉会 等. 饮料金属包装实罐产品的腐蚀检测 [J]. 化工学报, 2012, 63: 1797
doi: 10.3969/j.issn.0438-1157.2012.06.020
[8] Zhou C, Wang J H, Song S Z, et al. Degradation mechanism of lacquered tinplate in energy drink by in-situ EIS and EN [J]. J. Wuhan Univ. Technol. (Mater. Sci. Ed.), 2013, 28: 367
[9] Xia D H, Wang J H, Jiang Y X, et al. Corrosion behavior of novolac epoxy coated tinplate system in energy drink [J]. J. Tianjin Univ. (Sci. Technol.), 2013, 46: 503
[9] 夏大海, 王吉会, 蒋雨轩 等. 环氧酚醛/镀锡薄钢板体系在功能饮料中的腐蚀行为 [J]. 天津大学学报(自然科学与工程技术版), 2013, 46: 503
[10] Ma X Z, Meng L D, Cao X K, et al. Influence of Co-deposition of pollutant particulates ammonium sulfate and sodium chloride on atmospheric corrosion of copper of printed circuit board [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 540
[10] 马小泽, 孟令东, 曹祥康 等. 大气污染物硫酸铵和氯化钠混合盐粒沉降对电路板铜大气腐蚀的加速机制 [J]. 中国腐蚀与防护学报, 2022, 42: 540
doi: 10.11902/1005.4537.2021.138
[11] Hu Y F, Cao X K, Ma X Z, et al. Fluorescent nanofiller modified epoxy coatings for visualization of coating degradation [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 460
[11] 胡云飞, 曹祥康, 马小泽 等. 采用荧光纳米填料改性环氧涂层实现缺陷可视化 [J]. 中国腐蚀与防护学报, 2023, 43: 460
doi: 10.11902/1005.4537.2022.202
[12] Amand S, Musiani M, Orazem M E, et al. Constant-phase-element behavior caused by inhomogeneous water uptake in anti-corrosion coatings [J]. Electrochim. Acta, 2013, 87: 693
[13] Musiani M, Orazem M E, Pébère N, et al. Determination of resistivity profiles in anti-corrosion coatings from constant-phase-element parameters [J]. Prog. Org. Coat., 2014, 77: 2076
[14] Lau K, Permeh S. Assessment of durability and zinc activity of zinc-rich primer coatings by electrochemical noise technique [J]. Prog. Org. Coat., 2022, 167: 106840
[15] Xia D H, Song S Z, Gong W Q, et al. Detection of corrosion-induced metal release from tinplate cans using a novel electrochemical sensor and inductively coupled plasma mass spectrometer [J]. J. Food Eng., 2012, 113: 11
[16] Zhang L, Lu X Y, Zuo Y. The influence of cathodic polarization on performance of two epoxy coatings on steel [J]. Int. J. Electrochem. Sci., 2014, 9: 6266
[17] Li C Z, Gao Z M, Song S Z. EIS Characteristics of perfectly insulated coating systems under cathodic protection potential [J]. Corros. Sci. Prot. Technol., 2004, 16: 392
[17] 李春竹, 高志明, 宋诗哲. 阴极保护下高绝缘性能防护层的电化学阻抗谱特征 [J]. 腐蚀科学与防护技术, 2004, 16: 392
[1] 李卓玄, 曹艳辉, 李崇杰, 李辉, 张小明, 雍兴跃. 耦接件涂层失效程度与其力学损伤之间的关系[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[2] 傅江悦, 郭建喜, 杨延格, 冷哲, 王文. 单相流冲刷条件下一种低合金高强钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[3] 裴莹莹, 管方, 董续成, 张瑞永, 段继周, 侯保荣. Desulfovibrio Bizertensis SY-1在阴极极化条件下对X70 管线钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[4] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[5] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[6] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[7] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[8] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[9] 刘明, 王杰, 朱春晖, 张延晓. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[10] 王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[11] 袁世成, 吴艳峰, 徐长慧, 王兴奇, 冷哲, 杨延格. 多羟基超分散剂对水性环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[12] 毛英畅, 祝钰, 孙圣凯, 秦真波, 夏大海, 胡文彬. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[13] 温佳源, 宋贵宏, 韦小园, 赵鑫, 吴玉胜, 杜昊, 贺春林. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
[14] 王淇萱, 吕文生, 杨鹏, 诸利一, 廖文景, 朱远乐. 尾矿库埋入式传感器不锈钢外壳腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[15] 李振欣, 吕美英, 杜敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.