Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 645-657     CSTR: 32134.14.1005.4537.2023.231      DOI: 10.11902/1005.4537.2023.231
  研究报告 本期目录 | 过刊浏览 |
IN625激光熔覆层腐蚀致微裂纹扩展机理研究
邓双九, 李昌(), 余梦辉, 韩兴
辽宁科技大学机械工程与自动化学院 鞍山 114051
Prpogation Mechanism of Microcracks Caused by Corrosion of Laser Cladded In625 Coating on Nodular Cast Iron in 3.5%NaCl Solution
DENG Shuangjiu, LI Chang(), YU Menghui, HAN Xing
School of Mechanical Engineering and Automation, University of Science and Technology of Liaoning, Anshan 114051, China
引用本文:

邓双九, 李昌, 余梦辉, 韩兴. IN625激光熔覆层腐蚀致微裂纹扩展机理研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 645-657.
Shuangjiu DENG, Chang LI, Menghui YU, Xing HAN. Prpogation Mechanism of Microcracks Caused by Corrosion of Laser Cladded In625 Coating on Nodular Cast Iron in 3.5%NaCl Solution[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 645-657.

全文: PDF(15485 KB)   HTML
摘要: 

对QT600球墨铸铁表面熔覆IN625涂层,观察熔覆层显微组织与EDS能谱。对基体与熔覆层进行3.5%NaCl溶液中的电化学腐蚀实验,建立IN625激光熔覆层腐蚀致微裂纹扩展瞬态演变数值模型,考虑微小裂纹已经存在的情况下,熔覆层在恶劣环境工作所诱发的腐蚀过程,分析离子浓度、离子迁移、pH值、电极电位和腐蚀速率等各项数值在腐蚀过程中的瞬态演变规律。结果表明,IN625熔覆层相较于QT600基体耐蚀性显著提升。

关键词 激光熔覆技术IN625熔覆层微裂纹腐蚀电化学实验    
Abstract

IN625 coating was laser clad on the surface of QT600 nodular cast iron, and the microstructure and composition of the clad coating were characterized by means of optical microscope and scanning electron microscope with energy dispersive spectroscope. The electrochemical corrosion behavior of the IN625 clad QT600 nodular cast iron was examined in 3.5%NaCl solution. Meanwhile, a numerical model of the transient evolution of micro-crack growth induced by corrosion of IN625 laser cladding layer was established, considering the corrosion process induced by the existence of micro-cracks in the cladding layer working in a harsh environment. The transient evolution of ion concentration, ion migration, pH value, electrode potential and corrosion rate during corrosion were analyzed. The results show that the corrosion resistance of IN625 clad QT600 nodular cast iron is significantly superior to that of the bare QT600 nodular cast iron.

Key wordslaser cladding technology    IN625 cladding layer    microcracking    corrosion    electrochemical experiment
收稿日期: 2023-07-26      32134.14.1005.4537.2023.231
ZTFLH:  TG171  
基金资助:辽宁省应用基础研究计划(2023JH2/101300226)
通讯作者: 李昌,E-mail: lichang2323-23@163.com,研究方向为机械可靠性工程、多能场复合激光先进制造、焊接可靠性、超音速喷涂、航空轴承使役损伤机理及可靠性试验方法
Corresponding author: LI Chang, E-mail: lichang2323-23@163.com
作者简介: 邓双九,男,1999年生,硕士生
图1  推进器支架熔覆层表面微观裂纹
图2  QT600球墨铸铁与IN625合金粉末形貌
MaterialCSiMnMoCrPSNbFeNi
QT6003.252.730.350.20.20.050.02-Bal.0.6
IN6250.10.430.388.920.7--3.390.62Bal.
表1  QT600球墨铸铁与IN625合金粉末元素组成 (mass fraction / %)
图3  激光熔覆技术原理图
图4  IN625激光熔覆层的断面形貌以及沿深度元素分布
图5  QT600球墨铸铁和IN625熔覆层极化曲线拟合
图6  IN625熔覆层微裂纹腐蚀示意图
图7  微观立方体示意图
图8  IN625熔覆层微裂纹腐蚀扩展网格划分图
图9  IN625熔覆层常规物理性质随温度的变化
图10  微裂纹腐蚀0~100 d 后pH变化云图
图11  不同位置数据提取线
图12  微裂纹腐蚀不同位置pH变化情况
图13  微裂纹腐蚀不同位置电极电位变化情况
图14  微裂纹腐蚀不同位置扩展速率变化情况
图15  微裂纹腐蚀不同位置深度变化曲线
图16  0~100 d Ni2+浓度变化情况
图17  0~100 d Na+浓度变化情况
图18  0~100 d Cl-浓度变化情况
图19  沿数据提取线获得不同时间离子浓度变化曲线图
图20  Ni2+迁移轨迹分析
图21  Na+迁移轨迹分析
图22  Cl-迁移轨迹分析
1 Zhang J, Wu W N, Zhao L Z. Research progress and development trend of laser cladding [J]. Hot Work. Technol., 2013, 42(6): 131
1 张 坚, 吴文妮, 赵龙志. 激光熔覆研究现状及发展趋势 [J]. 热加工工艺, 2013, 42(6): 131
2 Chang G R, Liu L Y, Fu F X, et al. Research on corrosion resistance of Ni based alloy coating by laser cladding [J]. J. Xi’an Univ. (Nat. Sci. Ed.), 2017, 20(5): 91
2 畅庚榕, 刘立炎, 付福兴 等. 激光熔覆Ni基合金层耐腐蚀性研究 [J]. 西安文理学院学报(自然科学版), 2017, 20(5): 91
3 Mohammed S, Rajamure R S, Zhang Z, et al. Tailoring corrosion resistance of laser-cladded Ni/WC surface by adding rare earth elements [J]. Int. J. Adv. Manuf. Technol., 2018, 97: 4043
doi: 10.1007/s00170-018-2227-z
4 Guo Y, Ye Z, Yang W T, et al. Microstructure and salt spray corrosion resistance of laser-clad nickel-based and iron-based layers containing tungsten carbide [J]. Electroplat. Finish., 2019, 38: 1054
4 郭 岩, 叶 智, 杨文涛 等. 含碳化钨的镍基和铁基合金激光熔覆层的组织结构与耐盐雾腐蚀性能 [J]. 电镀与涂饰, 2019, 38: 1054
5 Fu F X, Cheng H, Feng J S, et al. Influence of laser scanning speed on corrosion resistance and hardness properties of Fe-Mn-Si-Cr-Ni-Co alloy coating [J]. Integr. Ferroelectr., 2019, 198: 109
doi: 10.1080/10584587.2019.1592583
6 Liu H F, Tan C K I, Wei Y F, et al. Laser-cladding and interface evolutions of Inconel 625 alloy on low alloy steel substrate upon heat and chemical treatments [J]. Surf. Coat. Technol., 2020, 404: 126607
doi: 10.1016/j.surfcoat.2020.126607
7 Wang R, Ouyang C Y, Li Q H, et al. Study of the microstructure and corrosion properties of a Ni-based alloy coating deposited onto the surface of ductile cast iron using high-speed laser cladding [J]. Materials (Basel), 2022, 15: 1643
doi: 10.3390/ma15051643
8 Han X, Li C, Zhang D C, et al. Numerical simulation and experiment of quenching process of 35CrMnSi by disk laser [J]. J. Laser Appl., 2021, 33: 022004
9 Situmorang R S, Seri O, Kawai H. Estimation of exchange current density for hydrogen evolution reaction of copper electrode by using the differentiating polarization method [J]. Appl. Surf. Sci., 2020, 505: 144300
doi: 10.1016/j.apsusc.2019.144300
10 Marshall R S, Katona R M, Melia M A, et al. Pit stability predictions of additively manufactured SS316 surfaces using finite element analysis [J]. J. Electrochem. Soc., 2022, 169: 021506
11 Lu Y X, Li X, Jing H Y, et al. Finite element simulation of carbon steel welded joint corrosion [J]. Trans. China Weld. Inst., 2018, 39(5): 10
11 路永新, 李 霄, 荆洪阳 等. 碳钢焊接接头腐蚀的有限元模拟 [J]. 焊接学报, 2018, 39(5): 10
12 Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of aircraft components in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 455
12 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 455
doi: 10.11902/1005.4537.2019.202
13 Ding Q M, Qin Y X, Cui Y Y. Investigation of corrosion behavior of 3Cr steel in 3.5% NaCl solution based on COMSOL multiphysics simulation research [J]. Mater. Prot., 2020, 53(1): 37
13 丁清苗, 秦永祥, 崔艳雨. 基于COMSOL Multiphysics的3Cr钢在 3.5%NaCl溶液中的腐蚀行为研究 [J]. 材料保护, 2020, 53(1): 37
14 Zhang M F. Pitting corrosion and its numerical simulation based on peridynamics [D]. Xi'an: Northwestern Polytechnical University, 2017
14 张毛飞. 基于近场动力学的点蚀及其数值仿真 [D]. 西安: 西北工业大学, 2017
15 Liu R J, Wheeler M F, Yotov I. On the spatial formulation of discontinuous Galerkin methods for finite elastoplasticity [J]. Comput. Methods Appl. Mech. Eng., 2013, 253: 219
doi: 10.1016/j.cma.2012.07.015
16 Zhang L, Xu W J, Long J, et al. Surface roughening analysis of cold drawn tube based on macro-micro coupling finite element method [J]. J. Mater. Process. Technol., 2015, 224: 189
doi: 10.1016/j.jmatprotec.2015.05.009
17 Wu N. Effect of microstructure and initiation defect on small fatigue crack initiation and propagation of Ni-based superalloy GH4169 [D]. Shanghai: East China University of Science and Technology, 2016
17 吴 楠. 微观组织和初始缺陷对镍基合金GH4169疲劳裂纹萌生及扩展行为的影响 [D]. 上海: 华东理工大学, 2016
18 He F J, Zhou H M, Li K, et al. Numerical analysis and experimental verification of melt pool evolution during laser cladding of 40CrNi2Si2MoVA steel [J]. J. Therm. Spray Technol., 2023, 32: 1416
doi: 10.1007/s11666-023-01544-y
19 Dong B W, Peng G Y, Wu Z P, et al. A CALPHAD-MD coupled method to reveal the strengthening mechanism in precipitation-strengthening Cu-Ni-Al alloy with evolving microstructures [J]. Int. J. Plast., 2023, 162: 103540
doi: 10.1016/j.ijplas.2023.103540
[1] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[2] 张照易, 周学杰, 陈昊, 吴军, 陈志飈, 陈志坚. CCSAQ235B钢在长江淡水环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 735-744.
[3] 张明, 龚宁, 张博, 霍宏博, 李浩男, 钟显康. 基于腐蚀预测和强度计算的油管服役寿命评估[J]. 中国腐蚀与防护学报, 2024, 44(3): 781-788.
[4] 解辉, 于超, 花靖, 蒋秀. NH+4浓度对N80钢在饱和CO2 的3%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 745-754.
[5] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[6] 孙佳钰, 彭文山, 邢少华. 应力-溶解氧耦合对Ni-Cr-Mo-V高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 755-764.
[7] 龙武剑, 唐杰, 罗启灵, 丘章鸿, 王海龙. 生物质碳点对Q235钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 807-814.
[8] 周龙, 鲁骏, 丁文珊, 李昊, 陶涛, 师超, 邵亚薇, 刘光明. 不同植酸盐对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 669-678.
[9] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[10] 丁昱智, 曹金鑫, 曹凤婷, 李涛, 陶建涛, 王铁钢, 杲广尧, 范其香. 基于风险的检验技术在石油炼化领域中的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 553-566.
[11] 胡琪, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. Inconel 718及其渗铝涂层在Na2SO4 + 5%NaCl混合盐膜下的热腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[12] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[13] 岑远遥, 廖光萌, 朱玉琴, 赵方超, 刘聪, 何建新, 周堃. 基于布拉格光纤光栅的铝合金应力腐蚀裂纹扩展监测技术[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
[14] 麻衡, 田会云, 刘宇茜, 王月香, 何康, 崔中雨, 崔洪芝. S420海工钢在不同海洋区带环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[15] 徐佳新, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. K452合金表面CVD渗铝涂层制备温度对其750℃硫酸盐热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 612-622.