Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (4): 993-1000     CSTR: 32134.14.1005.4537.2023.243      DOI: 10.11902/1005.4537.2023.243
  轻质合金腐蚀与防护专栏 本期目录 | 过刊浏览 |
铝合金微通道换热器的腐蚀防护现状与进展
何佳璇1, 张羽彤1, 管旭东1, 唐建华2, 黄海2, 赵旭辉1(), 唐聿明1(), 左禹1
1.北京化工大学 碳纤维及功能高分子教育部重点实验室 北京 100029
2.浙江三花智能控制股份有限公司 杭州 310018
Present Status and Progress of Corrosion Protection for Microchannel Heat Exchangers of Al-alloy
HE Jiaxuan1, ZHANG Yutong1, GUAN Xudong1, TANG Jianhua2, HUANG Hai2, ZHAO Xuhui1(), TANG Yuming1(), ZUO Yu1
1. Key Laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
2. Zhejiang Sanhua Intelligent Controls Co., Ltd., Hangzhou 310018, China
引用本文:

何佳璇, 张羽彤, 管旭东, 唐建华, 黄海, 赵旭辉, 唐聿明, 左禹. 铝合金微通道换热器的腐蚀防护现状与进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
Jiaxuan HE, Yutong ZHANG, Xudong GUAN, Jianhua TANG, Hai HUANG, Xuhui ZHAO, Yuming TANG, Yu ZUO. Present Status and Progress of Corrosion Protection for Microchannel Heat Exchangers of Al-alloy[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 993-1000.

全文: PDF(1961 KB)   HTML
摘要: 

介绍了微通道换热器中存在的腐蚀问题,概述了包括冷却剂、合金相间电位差、大气污染物等腐蚀诱因和机理,并总结了缓蚀剂添加和基材表面处理等腐蚀控制手段;阐述了诸如化学镀、阳极氧化、化学转化、溶胶-凝胶处理等3003铝合金基材的表面防护技术,为耐蚀铝合金微通道换热器的开发和生产提供参考。

关键词 微通道换热器3003铝合金耐蚀性表面处理    
Abstract

Microchannel heat exchangers of Al-alloy are the important component for air conditioner, of which the primary material is 3003 Al-alloy. In practical applications, the Al-alloy is suffered from corrosion and then results in the heat exchanger failure. This paper firstly introduces the corrosion problems existing in microchannel heat exchangers, then reviews the corrosion causes and influencing factors, such as coolants, micro-galvanic corrosion of the alloy and air pollutants etc., and summarizes corrosion control methods such as inhibitors and surface treatments. Finally elaborates some surface treatment techniques developed for 3003 Al-alloy, including electroless plating, anodizing, chemical conversion, sol-gel treatment etc., which probably provide references for the development and production of corrosion-resistant microchannel heat exchangers of 3003 Al-alloy.

Key wordsmicrochannel heat exchangers    3003 Al-Alloy    corrosion resistance    surface treatment
收稿日期: 2023-08-08      32134.14.1005.4537.2023.243
ZTFLH:  TG178  
通讯作者: 赵旭辉,E-mail: xhzhao@mail.buct.edu.cn,研究方向为金属腐蚀电化学与表面保护技术;
唐聿明,E-mail: tangym@mail.buct.edu.cn,研究方向为金属的腐蚀与防护、涂层失效及电化学评价
Corresponding author: ZHAO Xuhui, E-mail: xhzhao@mail.buct.edu.cn;
作者简介: 何佳璇,女,1999年生,硕士生
图1  微通道换热器的结构简图
图2  微通道换热器经1250 h中性盐雾后的翅片腐蚀脱落的照片[13]
图3  扁管与翅片之间的电化学作用示意图
图4  铝管截面的晶间腐蚀[24]
[1] Tan Y L. Research progress of microchannel heat exchanger used in air conditioning [J]. Mech. Eng., 2018, (8): 95
[1] 谈玉龙. 微通道换热器在空调应用中的研究现状 [J]. 机械工程师, 2018, (8): 95
[2] Zhang Z B, Chen M, Zhang W T, et al. Thermodynamic, economic and environmental performance of a flute-type distributor embedded micro-channel evaporator for RACs [J]. Sustain. Energy Technol. Assess., 2022, 50: 101827
[3] Guía-Tello J C, Pech-Canul M A, Trujillo-Vázquez E, et al. Furnace brazing parameters optimized by taguchi method and corrosion behavior of tube-fin system of automotive condensers [J]. J. Mater. Eng. Perform., 2017, 26: 3901
[4] Peng C T, Wang L, Chen L, et al. Research on corrosion resistance of aluminum tube materials for air conditioning heat exchangers [J]. Refrig. Air Cond., 2020, 20(8): 29
[4] 彭楚堂, 王 琳, 陈 龙 等. 空调换热器铝管材料的抗腐蚀性研究 [J]. 制冷与空调, 2020, 20(8): 29
[5] Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI [J]. IEEE Electr. Device Lett., 1981, 2(5): 126
[6] Zhou Z C. The applications of all-aluminum microchannel heat exchangers in air conditioning [J]. Refrigeration, 2014, 33(3): 44
[6] 周子成. 全铝微通道换热器在空调中的应用 [J]. 制冷, 2014, 33(3): 44
[7] Guía-Tello J C, Pech-Canul M I, Trujillo-Vázquez E, et al. Effect of brazing parameters on fillet size and microstructure of cladded fin-microchannel tube joints [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 3240
[8] Wang Y, Chen L Y, Xu D K, et al. Experimental study on electrochemical corrosion and salt-spray corrosion behavior of 3003 and 3102 aluminum alloys [J]. Chem. Eng. Mach., 2018, 45: 556
[8] 王 勇, 陈良源, 徐德奎 等. 3003和3102铝合金电化学和盐雾腐蚀性能实验研究 [J]. 化工机械, 2018, 45: 556
[9] Bajer J, Zaunschirm S, Plank B, et al. Kirkendall effect in twin-roll cast AA 3003 aluminum alloy [J]. Crystals, 2022, 12: 607
[10] Marshall G J, Bolingbroke R K, Gray A. Microstructural control in an aluminum core alloy for brazing sheet applications [J]. Metall. Trans., 1993, 24A: 1935
[11] Xia Y, Zhong Y, Hrnjak P S, et al. Frost, defrost, and refrost and its impact on the air-side thermal-hydraulic performance of louvered-fin, flat-tube heat exchangers [J]. Int. J. Refrig., 2006, 29: 1066
[12] Guo H, Sun J F, Ding X L, et al. The cause of cracking of the aluminum alloy tube in the automobile radiator [J]. Light Alloy Fabricat. Technol., 2016, 44(1): 33
[12] 郭 鹤, 孙继飞, 丁响雷 等. 汽车散热器铝合金管开裂原因 [J]. 轻合金加工技术, 2016, 44(1): 33
[13] Liu Z X, Wang L, Cao Y, et al. Comparative analysis on corrosion of finned-tube heat exchanger and micro-channel heat exchanger [J]. Refrig. Air Cond., 2015, 15(3): 30
[13] 刘志孝, 王 磊, 曹 勇 等. 翅片管式换热器与微通道换热器腐蚀对比分析 [J]. 制冷与空调, 2015, 15(3): 30
[14] Zhang P J, Dong W L, Wang L D, et al. Failure analysis of micro-channel condenser of air source heat pump water heater [J]. Eng. Fail. Anal., 2021, 122: 105250
[15] Ifezue D, Tobins F H. Corrosion failure of aluminum heat exchanger tubes [J]. J. Fail. Anal. Preven., 2015, 15: 541
[16] Faes W, Lecompte S, Ahmed Z Y, et al. Corrosion and corrosion prevention in heat exchangers [J]. Corros. Rev., 2019, 37: 131
doi: 10.1515/corrrev-2018-0054
[17] Chiba M, Nakayama Y, Hiraga T, et al. Corrosion of aluminum alloys in hot aqueous solutions and Dry/Wet-repeating atmospheres-effects of the concentration of Cl-, Cu2+, and dissolved O2, and of the addition of an inhibitor [J]. Corros. Eng., 2014, 63: 363
[18] Liu Y, Cheng Y F. Effects of coolant chemistry on corrosion of 3003 aluminum alloy in automotive cooling system [J]. Mater. Corros., 2010, 61: 574
[19] Zhang G A, Xu L Y, Cheng Y F. Mechanistic aspects of electrochemical corrosion of aluminum alloy in ethylene glycol–water solution [J]. Electrochim. Acta, 2008, 53: 8245
[20] Zuo H Y, Gong M, Zheng X W, et al. Corrosion behavior of 3A21 aluminum alloy in ethylene glycol solution under different atmospheres [J]. Mater. Res. Exp., 2020, 7: 026523
[21] Liu Y, Cheng Y F. Inhibiting effect of cerium ions on corrosion of 3003 aluminum alloy in ethylene glycol-water solutions [J]. J. Appl. Electrochem., 2011, 41: 383
[22] Salghi R, Bazzi L, Hammouti B, et al. Comparative study of the effect of inorganic ions on the corrosion of Al 3003 and 6063 in carbonate solution [J]. Prog. Org. Coat., 2004, 51: 113
[23] Yazdzad A R, Shahrabi T, Hosseini M G. Inhibition of 3003 aluminum alloy corrosion by propargyl alcohol and tartrate ion and their synergistic effects in 0.5% NaCl solution [J]. Mater. Chem. Phys., 2008, 109: 199
[24] Liu Y, Cheng Y F. Inhibition of corrosion of 3003 aluminum alloy in ethylene glycol-water solutions [J]. J. Mater. Eng. Perform., 2011, 20: 271
[25] El Ibrahimi B, Jmiai A, Somoue A, et al. Cysteine duality effect on the corrosion inhibition and acceleration of 3003 Aluminium alloy in a 2% NaCl Solution [J]. Port. Electrochim. Acta, 2018, 36: 403
[26] Pandya A, Saha D, Singh J K, et al. Effect of environmental pollution on corrosion characteristics of 3003 Aluminium Alloy exposed in different parts of India [J]. Trans. Indian Inst. Met., 2017, 70: 1607
[27] Peta K, Grochalski K, Piasecki A, et al. The influence of sodium chlorides fog on corrosion resistance of heat exchangers used in automotive [J]. Arch. Mech. Technol. Mater., 2017, 37(1): 45
[28] Sui M. Corrosion failure analysis and prevention of multiple micro-channel heat exchangers [J]. Refrig. Air Cond., 2014, 14(10): 65
[28] 眭 敏. 多元微通道换热器腐蚀失效分析及预防 [J]. 制冷与空调, 2014, 14(10): 65
[29] Scott A C, Woods R A, Harris J F. Accelerated corrosion test methods for evaluating external corrosion resistance of vacuum brazed aluminum heat exchangers [R]. SAE Transactions, 1991: 910590
[30] Li Y Y, Shen Y X, Li X P, et al. Interfacial microstructure and mechanical properties of vacuum brazed 3003 aluminum alloy honeycomb panel [J]. Weld. Join., 2021, (7): 23
[30] 李云月, 沈元勋, 李秀朋 等. 真空钎焊3003铝合金蜂窝板界面组织与性能 [J]. 焊接, 2021, (7): 23
[31] Wei W, Xu K H, Liang Y Y, et al. Study on long-term performance of microchannel heat exchanger with Zn-coated and Si-coated extruded tube [J]. J. Refrig., 2013, 34(4): 5
[31] 韦 伟, 徐坤豪, 梁媛媛 等. 采用表面喷锌及喷硅扁管的微通道换热器长效特性研究 [J]. 制冷学报, 2013, 34(4): 5
[32] Hymel P J, Guan D S, Mu Y, et al. Internal passivation of Al-based microchannel devices by electrochemical anodization [J]. J. Micromech. Microeng., 2015, 25: 027003
[33] Huang L Y, Liu Z L, Gou Y J, et al. Application study of new anti-frosting coating for fin and tube heat exchanger [J]. J. Refrig., 2008, 29(6): 1
[33] 黄玲艳, 刘中良, 勾昱君 等. 一种新型抑霜涂料在翅片管式换热器上的应用研究 [J]. 制冷学报, 2008, 29(6): 1
[34] Zhang X L, Wang Y C, Zhao D W, et al. Improved thermal performance of heat exchanger with TiO2 nanoparticles coated on the surfaces [J]. Appl. Therm. Eng., 2017, 112: 1153
[35] Afshar F N, Szala E, Wittebrood A, et al. Influence of material related parameters in Sea Water Acidified Accelerated Test, reliability analysis and electrochemical evaluation of the test for aluminum brazing sheet [J]. Corros. Sci., 2011, 53: 3923
[36] Luan B, Le T, Nagata J. An investigation on the coating of 3003 aluminum alloy [J]. Surf. Coat. Technol., 2004, 186: 431
[37] Yang H J, Gao Y M, Qin W C, et al. Microstructure and corrosion behavior of electroless Ni–P on sprayed Al–Ce coating of 3003 aluminum alloy [J]. Surf. Coat. Technol., 2015, 281: 176
[38] Yang H J, Gao Y M, Qin W C. Investigation of the corrosion behavior of Electroless Ni-P coating in flue gas condensate [J]. Coatings, 2017, 7(1): 16
[39] Du Y J, Sun Y, Shen L, et al. Effects of mild melt treatment on tin coatings [J]. Electroplat. Pollut. Control, 2005, 25(4): 6
[39] 杜轶君, 孙 勇, 沈黎 等. 软熔处理对锡镀层的影响 [J]. 电镀与环保, 2005, 25(4): 6
[40] Liu J M, Feng Q Y, Gao R A, et al. Current situation and "New" development of aluminum alloy anodizing system [J]. Mater. Prot., 2023, 56(7): 157
[40] 刘峻铭, 冯秋宇, 高瑞安 等. 铝合金阳极氧化体系的现状与“新”发展 [J]. 材料保护, 2023, 56(7): 157
[41] Hu Q, Gao J Y, Guo R S, et al. Long-term corrosion of lubricant infused surface with Micro-nano structures on anodized aluminum oxide [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 773
[41] 胡 倩, 高佳仪, 郭瑞生 等. 微纳结构对阳极氧化铝超滑表面长期耐蚀性的影响机制研究 [J]. 中国腐蚀与防护学报, 2023, 43: 773
[42] Zhang L, Fu G Y, Lu J Y, et al. Hard anodization of 3003 aluminum alloy in sulfuric acid at low temperature [J]. Electropat. Finish., 2018, 37(3): 113
[42] 张 丽, 付国燕, 陆江银 等. 3003铝合金低温硫酸硬质阳极氧化 [J]. 电镀与涂饰, 2018, 37(3): 113
[43] Cai J M, Guan L, Li Y. Effect of surface treatment on galvanic corrosion of 6061 Al-alloy and DC01 carbon steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 281
[43] 蔡建敏, 关 蕾, 李 雨. 不同表面防护处理的6016铝合金/DC01碳钢电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 281
doi: 10.11902/1005.4537.2021.048
[44] Smit M A, Hunter J A, Sharman J D B, et al. Effect of organic additives on the performance of titanium-based conversion coatings [J]. Corros. Sci., 2003, 45: 1903
[45] Kim M M, Kapun B, Tiringer U, et al. Protection of aluminum alloy 3003 in sodium chloride and simulated acid rain solutions by commercial conversion coatings containing Zr and Cr [J]. Coatings, 2019, 9: 563
[46] Banczek E P, Moraes S R, Assis S L, et al. Effect of surface treatments based on self-assembling molecules and cerium coatings on the AA3003 alloy corrosion resistance [J]. Mater. Corros., 2013, 64: 199
[47] Danilidis I, Hunter J, Scamans G M, et al. Effect of silica nano-particles on the performance of manganese-based conversion treatments [J]. Corros. Sci., 2008, 50: 3038
[48] Yabuki A, Yamagami H, Noishiki K. Barrier and self-healing abilities of corrosion protective polymer coatings and metal powders for aluminum alloys [J]. Mater. Corros., 2007, 58: 497
[49] Berbel L O, Pinto Rodrigues P R, do Prado Banczek E. Aluminum coating obtained through the sol-gel method to protect metallic surfaces against corrosion [J]. Mater. Sci. Forum, 2014, 805: 190
[50] Niknahad M, Mannari V. Corrosion protection of aluminum alloy substrate with nano-silica reinforced organic-inorganic hybrid coatings [J]. J. Coat. Technol. Res., 2016, 13: 1035
[51] Zhou Q, He C L, Cai Q K, et al. Research progress in sol-gel technology applied in the surface treatment for aluminum alloy [J]. Mater. Rep., 2007, 21(12): 83
[51] 周 琦, 贺春林, 才庆魁 等. 溶胶-凝胶技术在铝合金表面处理中的研究进展 [J]. 材料导报, 2007, 21(12): 83
[52] Tussolini M, Ichikawa T, Gallina A L, et al. Electrochemical study of ceramics based on niobium oxide over aluminum alloy AA 3003 [J]. Mater. Sci. Forum, 2015, 820: 225
[53] Yaseen W K, Sanders S F, Almotawa R M, et al. Are metal complexes “Organic,” “Inorganic,” “Organometallic,” or “Metal-Organic” Materials? a case study for the use of Trinuclear coinage metal complexes as “Metal-Organic Coatings” for corrosion suppression on aluminum substrates [J]. Comment. Inorg. Chem., 2019, 39: 1
[54] Yaseen W K, Marpu S B, Golden T D, et al. Synthesis and evaluation of a novel fluorinated poly(hexafluoroisopropyl methacrylate) polymer coating for corrosion protection on aluminum alloy [J]. Surf. Coat. Technol., 2020, 404: 126444
[55] Coquery C, Carosio F, Negrell C, et al. New bio-based phosphorylated chitosan/alginate protective coatings on aluminum alloy obtained by the LbL technique [J]. Surf. Interf., 2019, 16: 59
[56] Zhou Y, Rossi B, Zhou Q X, et al. Thin plasma-polymerized coatings as a primer with polyurethane topcoat for improved corrosion resistance [J]. Langmuir, 2020, 36: 837
doi: 10.1021/acs.langmuir.9b02589 pmid: 31898908
[57] Kim C, Karayan A I, Milla J, et al. Smart coating embedded with pH-responsive Nanocapsules containing a corrosion inhibiting agent [J]. ACS Appl. Mater. Interf., 2020, 12: 6451
[1] 张吉昊, 徐亚程, 贾学远, 高荣杰. B10铜合金超双疏表面的制备及其性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 909-917.
[2] 田梦真, 王勇, 李涛, 汪川, 郭泉忠, 郭建喜. 电参数对AZ31B镁合金微弧氧化膜能耗及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[3] 巫海亮, 陈宇强, 黄亮, 顾宏宇, 孙宏博, 刘佳俊, 王乃光, 宋宇峰. 高铁散热器用3003铝合金焊接隔板的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[4] 师超, 李嘉浩, 王荣祥, 张博, 周兰欣, 刘光明, 邵亚薇. 不同偏压对45#钢电弧离子镀铝层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[5] 谢云, 刘婷, 王雯, 周佳琳, 唐颂. 微观组织对一种超轻高强镁锂合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[6] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[7] 商婷, 蒋光锐, 刘广会, 秦汉成. 热处理对Zn-6%Al-3%Mg镀层微观组织与耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[8] 杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[9] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[10] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[11] 肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[12] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[13] 汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[14] 毛训聪, 陈乐平, 彭聪. Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[15] 张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.