Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 519-528     CSTR: 32134.14.1005.4537.2023.185      DOI: 10.11902/1005.4537.2023.185
  综合评述 本期目录 | 过刊浏览 |
镁合金腐蚀测试与分析研究进展
黄居峰1(), 宋光铃2()
1.中国石油集团工程材料研究院有限公司 油气钻采输送装备全国重点实验室 西安 710076
2.南方科技大学海洋科学与工程系 深圳 518055
Research Progress on Corrosion Testing and Analysis of Mg-alloys
HUANG Jufeng1(), SONG Guangling2()
1. State Key Laboratory of Oil and Gas Equipment, CNPC Tubular Goods Research Institute, Xi'an 710076, China
2. Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
引用本文:

黄居峰, 宋光铃. 镁合金腐蚀测试与分析研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 519-528.
Jufeng HUANG, Guangling SONG. Research Progress on Corrosion Testing and Analysis of Mg-alloys[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 519-528.

全文: PDF(3380 KB)   HTML
摘要: 

镁合金是最轻的工程结构材料,其溶解特性、腐蚀机理以及防护措施等方面已被广泛研究,而镁合金腐蚀测试方法和技术则是这些研究的重要基础。由于镁合金的溶解过程存在负差数效应,导致其测试技术和分析方法与其他金属存在差异。本文综述了国内外关于镁合金腐蚀测试方法与技术的研究进展,介绍了镁合金测试的通用技术与特色技术,分析了各种测试技术的适用条件和应用案例,重点对比了腐蚀速率测试方法,期望为镁合金腐蚀测试方法与技术的选择提供支撑,避免因不当测试带来的错误分析和结论。

关键词 镁合金测试方法电化学技术    
Abstract

Mg-alloy is the lightest engineering metal material, and its dissolution characteristics, corrosion mechanism and protective measures have been widely studied. Corrosion test methods and techniques for Mg-alloys have been critically important to the research. Due to the negative difference effect, the testing techniques and analysis methods of Mg-alloys are different from those of other metals. This paper reviews the research progress of corrosion test methods and techniques for Mg-alloys, including the general and characteristic test technologies, analyzes the applicable conditions and application cases of various testing technologies, and focuses on the comparison of corrosion rate testing methods. It is expected that the review will provide a solid foundation for the selection of reasonable corrosion test methods and techniques in the future research for Mg-alloys, which will avoid erroneous conclusions resulting from improper testing and analysis.

Key wordsMg-alloy    testing method    electrochemical technology
收稿日期: 2023-06-04      32134.14.1005.4537.2023.185
ZTFLH:  TG174  
基金资助:陕西省自然科学基础研究计划(2024JC-YBQN-0500);中国石油天然气集团公司基础研究和战略储备技术研究基金(2021DQ03(2022Z-11));国家自然科学基金(52250710159);国家自然科学基金(51731008)
通讯作者: 宋光铃,E-mail:songgl@sustech.edu.cn,研究方向为金属腐蚀与防护;
黄居峰,E-mail:huangjufeng@cnpc.com.cn,研究方向为金属腐蚀与防护
Corresponding author: SONG Guangling, E-mail: songgl@sustech.edu.cn;
HUANG Jufeng, E-mail: huangjufeng@cnpc.com.cn
作者简介: 黄居峰,男,1991年生,博士,高级工程师
图1  极化条件下镁合金样品和电化学测试装置[7]
图2  纯镁在饱和Mg(OH)2溶液中的动电位极化曲线[16]
图3  纯镁在0.1 mol/L Na2SO4溶液中不同时间和不同阳极极化条件下的阻抗图[1]
图4  在0.1 mol/L盐酸溶液中镁样品的极化曲线及在恒电流阳极-恒电位阴极交替极化下的电位、电流密度和析氢速率[21]
MaterialSolutionTimeMethodCorrosion rate / mm·a-1Reference
Mg5Y3.5%NaCl300 hHydrogen collection4.1[22]
Mg5Y3.5%NaCl400 sTafel extrapolation0.4[22]
Mg5Li1Al3.5%NaCl14 dMass loss38[23]
Mg5Li1Al3.5%NaCl20 mTafel extrapolation22[23]
AZ913.5%NaCl24 hMass loss1.6[24]
AZ913.5%NaCl15 mTafel extrapolation1.3[24]
Mg0.06CuHanks solution7 dMass loss30[25]
Mg0.06CuHanks solution30 mTafel extrapolation0.12[25]
Mg0.14In0.1 mol/L NaCl1 dMass loss7[26]
Mg0.14In0.1 mol/L NaCl10 mTafel extrapolation0.6[26]
Pure Mg0.1 mol/L NaCl1 dMass loss0.8[26]
Pure Mg0.1 mol/L NaCl10 mTafel extrapolation0.3[26]
Pure MgNaCl+ZnCl241.3 hHydrogen collection12[27]
Pure MgNaCl+ZnCl241.3 hMass loss14[27]
Pure Mg0.4 mol/L Na2SO47 dHydrogen collection0.5[28]
Pure Mg0.4 mol/L Na2SO47 dAC impedance0.2[28]
Pure Mg0.4 mol/L (NH4)2SO47 dHydrogen collection16[28]
Pure Mg0.4 mol/L (NH4)2SO47 dAC impedance12[28]
表1  不同镁合金腐蚀速率的比较
TechniqueMeasurementAdvantageDisadvantage
Scanning Vibration Electrode Technique (SVET)

Potential Difference/Current

Density

Real time mechanistic information, 2D-3D data presentation, easy to set up, easily used with other techniques such as SIET

Time and sample size tradeoff, could be slow, cannot use high conductivity electrolyte

of electrolyte is a concern

Scanning Electrochemical Microscopy (SECM)

Current/

Potential

Several modes of operation, can be combined with other techniquesSometimes needs a redox active mediator, needs a bipotentiostat

Localized EIS (LEIS)

Local Capacitance

and Resistance

High sensitivity (1 nV), provides local impedance which cannot be obtained by any other method, good for insulated substrates

Stray inductance, could be slow

Scanning Kelvin Probe (SKP)Work FunctionNo need of an electrolyte, short experimentsLow resolution of SKP
Scanning Ion-Selective Electrode TechniqueLocal pH, ion concentrationCan be combined with SVET, easy way to measure ion concentrationFouling and damage to the ion selective electrode, resolution
表2  微区电化学技术的特性和优缺点[4]
图5  气泡干扰SVET测试示意图[29]
图6  腐蚀后的镁表面光学图和SKP图[32]
1 Huang J F, Song G L, Atrens A, et al. What activates the Mg surface-A comparison of Mg dissolution mechanisms [J]. J. Mater. Sci. Technol., 2020, 57: 204
doi: 10.1016/j.jmst.2020.03.060
2 Esmaily M, Svensson J E, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion [J]. Prog. Mater. Sci., 2017, 89: 92
doi: 10.1016/j.pmatsci.2017.04.011
3 King A D, Birbilis N, Scully J R. Accurate electrochemical measurement of magnesium corrosion rates; A combined impedance, mass-loss and hydrogen collection study [J]. Electrochim. Acta, 2014, 121: 394
doi: 10.1016/j.electacta.2013.12.124
4 Jadhav N, Gelling V J. Review-The use of localized electrochemical techniques for corrosion studies [J]. J. Electrochem. Soc., 2019, 166: C3461
doi: 10.1149/2.0541911jes
5 Wang Z Q, Xu C X, Yang L J, et al. Microstructure and corrosion resistance of medical degradable Mg-2Y-1Zn-x Zr alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 113
5 王中琪, 许春香, 杨丽景 等. 医用可降解Mg-2Y-1Zn-x Zr合金微观组织和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42: 113
doi: 10.11902/1005.4537.2021.014
6 Atrens A, Shi Z M, Mehreen S U, et al. Review of Mg alloy corrosion rates [J]. J. Magnes. Alloy., 2020, 8: 989
doi: 10.1016/j.jma.2020.08.002
7 Shi Z M, Atrens A. An innovative specimen configuration for the study of Mg corrosion [J]. Corros. Sci., 2011, 53: 226
doi: 10.1016/j.corsci.2010.09.016
8 Huang J F, Song G L. Hydrogen evolution, efficiency and exacerbated galvanic corrosion damage of magnesium alloy anode [J]. J. Mater. Eng., 2021, 49(12): 48
8 黄居峰, 宋光铃. 镁合金阳极的析氢、效率与电偶腐蚀放大效应 [J]. 材料工程, 2021, 49(12): 48
doi: 10.11868/j.issn.1001-4381.2021.000287
9 Song G L, Atrens A, StJohn D. An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys [A]. Hryn J N. Magnesium Technology [M]. Warrendale: TMS, 2001: 255
10 Fajardo S, Frankel G S. Gravimetric method for hydrogen evolution measurements on dissolving magnesium [J]. J. Electrochem. Soc., 2015, 162: C693
doi: 10.1149/2.0241514jes
11 Lü X, Deng K K, Wang C J, et al. Effect of SiCp size on microstructure and corrosion properties of cast AZ91 Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 135
11 吕 鑫, 邓坤坤, 王翠菊 等. SiCp尺寸对铸态AZ91镁合金显微组织与腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 135
12 Światowska J, Volovitch P, Ogle K. The anodic dissolution of Mg in NaCl and Na2SO4 electrolytes by atomic emission spectroelectrochemistry [J]. Corros. Sci., 2010, 52: 2372
doi: 10.1016/j.corsci.2010.02.038
13 Rybalka K V. Determination of metal corrosion rate using the pH-metry by the method of compensating additives [J]. Russ. J. Electrochem., 2014, 50: 500
doi: 10.1134/S1023193514050085
14 Liu Z Q, He X X, Qi K, et al. Galvanic corrosion behavior for galvanic couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1016
14 刘泽琪, 何潇潇, 祁 康 等. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1016
doi: 10.11902/1005.4537.2021.355
15 Fajardo S, Frankel G S. A kinetic model explaining the enhanced rates of hydrogen evolution on anodically polarized magnesium in aqueous environments [J]. Electrochem. Commun., 2017, 84: 36
doi: 10.1016/j.elecom.2017.10.001
16 Song G L, Unocic K A. The anodic surface film and hydrogen evolution on Mg [J]. Corros. Sci., 2015, 98: 758
doi: 10.1016/j.corsci.2015.05.047
17 Song G, Atrens A, St John D, et al. The anodic dissolution of magnesium in chloride and sulphate solutions [J]. Corros. Sci., 1997, 39: 1981
doi: 10.1016/S0010-938X(97)00090-5
18 Baril G, Galicia G, Deslouis C, et al. An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions [J]. J. Electrochem. Soc., 2007, 154: C108
doi: 10.1149/1.2401056
19 Gomes M P, Costa I, Pébère N, et al. On the corrosion mechanism of Mg investigated by electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2019, 306: 61
doi: 10.1016/j.electacta.2019.03.080
20 Birbilis N, King A D, Thomas S, et al. Evidence for enhanced catalytic activity of magnesium arising from anodic dissolution [J]. Electrochim. Acta, 2014, 132: 277
doi: 10.1016/j.electacta.2014.03.133
21 Huang J F, Song G L, Zhu Y X, et al. The anodically polarized Mg surface products and accelerated hydrogen evolution [J]. J. Magnes. Alloy., 2023, 11: 230
doi: 10.1016/j.jma.2021.05.008
22 Liu X B, Shan D Y, Song Y W, et al. Influence of yttrium element on the corrosion behaviors of Mg-Y binary magnesium alloy [J]. J. Magnes. Alloy., 2017, 5: 26
doi: 10.1016/j.jma.2016.12.002
23 Xiang Q, Jiang B, Zhang Y X, et al. Effect of rolling-induced microstructure on corrosion behaviour of an as-extruded Mg-5Li-1Al alloy sheet [J]. Corros. Sci., 2017, 119(5): 14
doi: 10.1016/j.corsci.2017.02.009
24 Turan M E, Sun Y, Aydin F, et al. Effects of carbonaceous reinforcements on microstructure and corrosion properties of magnesium matrix composites [J]. Mater. Chem. Phys., 2018, 218: 182
doi: 10.1016/j.matchemphys.2018.07.050
25 Yan X D, Zhao M C, Yang Y, et al. Improvement of biodegradable and antibacterial properties by solution treatment and micro-arc oxidation (MAO) of a magnesium alloy with a trace of copper [J]. Corros. Sci., 2019, 156: 125
doi: 10.1016/j.corsci.2019.05.015
26 Gore P, Cain T W, Laird J, et al. Enrichment efficiency of noble alloying elements on magnesium and effect on hydrogen evolution [J]. Corros. Sci., 2019, 151: 206
doi: 10.1016/j.corsci.2019.02.026
27 Huang J F, Song G L, Wang Z M, et al. ZnThe2+ destabilized surface film and accelerated corrosion of magnesium [J]. J. Electrochem. Soc., 2020, 167: 161508
doi: 10.1149/1945-7111/abd002
28 Cao F Y, Zhao C, Song G L, et al. The corrosion of pure Mg accelerated by haze pollutant ammonium sulphate [J]. Corros. Sci., 2019, 150: 161
doi: 10.1016/j.corsci.2019.01.042
29 Huang J F, Song G L, Wang Z M, et al. The real current density distribution on Mg surface [J]. J. Electrochem. Soc., 2021, 168: 077505
30 Song G L, Xu Z Q. Crystal orientation and electrochemical corrosion of polycrystalline Mg [J]. Corros. Sci., 2012, 63: 100
doi: 10.1016/j.corsci.2012.05.019
31 Zhang P H, Pang K, Ding K K, et al. Research progress of scanning vibrating electrode technique in field of corrosion [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 315
31 张彭辉, 逄 昆, 丁康康 等. 扫描振动电极技术在腐蚀领域的应用进展 [J]. 中国腐蚀与防护学报, 2017, 37: 315
doi: 10.11902/1005.4537.2016.115
32 Bastos A C, Quevedo M C, Karavai O V, et al. Review—on the application of the scanning vibrating electrode technique (SVET) to corrosion research [J]. J. Electrochem. Soc., 2017, 164: C973
doi: 10.1149/2.0431714jes
33 Williams G, Birbilis N, McMurray H N. The source of hydrogen evolved from a magnesium anode [J]. Electrochem. Commun., 2013, 36: 1
doi: 10.1016/j.elecom.2013.08.023
34 Li L L, Zhang B, Tian B, et al. SVET study of galvanic corrosion of Al/Mg2Si couple in aqueous solutions at different pH [J]. J. Electrochem. Soc., 2017, 164: C240
doi: 10.1149/2.0671706jes
35 Liu Y, Liu X, Zhang Z C, et al. Comparative, real-time in situ monitoring of galvanic corrosion in Mg-Mg2Ca and Mg-MgZn2 couples in Hank’s solution [J]. Corros. Sci., 2019, 161: 108185
doi: 10.1016/j.corsci.2019.108185
36 Hampel M, Schenderlein M, Schary C, et al. Efficient detection of localized corrosion processes on stainless steel by means of scanning electrochemical microscopy (SECM) using a multi-electrode approach [J]. Electrochem. Commun., 2019, 101: 52
doi: 10.1016/j.elecom.2019.02.019
37 Liu W J, Cao F H, Xia Y, et al. Localized corrosion of magnesium alloys in NaCl solutions explored by scanning electrochemical microscopy in feedback mode [J]. Electrochim. Acta, 2014, 132: 377
doi: 10.1016/j.electacta.2014.04.044
38 Zhang Q H, Liu P, Zhu Z J, et al. Electrochemical detection of univalent Mg cation: A possible explanation for the negative difference effect during Mg anodic dissolution [J]. J. Electroanal. Chem., 2021, 880: 114837
doi: 10.1016/j.jelechem.2020.114837
39 Galicia G, Pébère N, Tribollet B, et al. Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy [J]. Corros. Sci., 2009, 51: 1789
doi: 10.1016/j.corsci.2009.05.005
40 Calado L M, Taryba M G, Carmezim M J, et al. Self-healing ceria-modified coating for corrosion protection of AZ31 magnesium alloy [J]. Corros. Sci., 2018, 142: 12
doi: 10.1016/j.corsci.2018.06.013
41 Wu P P, Song G L, Zhu Y X, et al. The corrosion of Al-supersaturated Mg matrix and the galvanic effect of secondary phase nanoparticles [J]. Corros. Sci., 2021, 184: 109410
doi: 10.1016/j.corsci.2021.109410
42 Mei D, Lamaka S V, Feiler C, et al. The effect of small-molecule bio-relevant organic components at low concentration on the corrosion of commercially pure Mg and Mg-0.8Ca alloy: An overall perspective [J]. Corros. Sci., 2019, 153: 258
doi: 10.1016/j.corsci.2019.03.039
43 Lamaka S V, Karavai O V, Bastos A C, et al. Monitoring local spatial distribution of Mg2+, pH and ionic currents [J]. Electrochem. Commun., 2008, 10: 259
doi: 10.1016/j.elecom.2007.12.003
[1] 司伟婷, 张吉昊, 高荣杰. AZ31B镁合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 381-388.
[2] 宋东东, 万红霞, 徐栋, 周倩. 轧制对ZM5镁合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[3] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[4] 骆晨, 吴雄, 宋汉强, 孙志华, 汤智慧. 海洋环境服役飞机发动机镁合金使用要求和研究方向分析[J]. 中国腐蚀与防护学报, 2023, 43(4): 787-794.
[5] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[6] 黄志凤, 雍奇文, 房蕊, 谢治辉. AZ31镁合金表面超疏水耐腐蚀镍基复合涂层[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
[7] 吕鑫, 邓坤坤, 王翠菊, 聂凯波, 史权新, 梁伟. SiCp尺寸对铸态AZ91镁合金显微组织与腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 135-142.
[8] 赵艳亮, 赵景茂. 层状双金属氢氧化物对镁合金的保护作用及自愈性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
[9] 刘泽琪, 何潇潇, 祁康, 黄华良. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[10] 刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.
[11] 黄连鹏, 张欣, 熊伊铭, 陶嘉豪, 王泽华, 周泽华. 不同磁场强度下铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[12] 田卫平, 郭良帅, 王宇航, 周鹏, 张涛. Cu/Ag活化对微弧氧化涂层表面化学镀层生长及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 573-582.
[13] 杨延格, 曹京宜, 王兴奇, 方志刚, 于宏飞, 于宝兴, 王福会. 轻合金锆/钛基转化膜的设计及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 387-394.
[14] 刘煊煊, 于金山, 高燕, 赵鹏, 王启伟, 杜卓玲, 张俊喜. APTES改性蒙脱土对镁合金表面杂化溶胶-凝胶涂层防护性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 464-470.
[15] 杨欣宇, 杨云天, 卢小鹏, 张涛, 王福会. 镁合金缓蚀剂研究进展[J]. 中国腐蚀与防护学报, 2022, 42(3): 435-440.