Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 787-794     CSTR: 32134.14.1005.4537.2023.162      DOI: 10.11902/1005.4537.2023.162
  中国腐蚀与防护学会杰出青年成就奖论文专栏 本期目录 | 过刊浏览 |
海洋环境服役飞机发动机镁合金使用要求和研究方向分析
骆晨1(), 吴雄2, 宋汉强2, 孙志华1, 汤智慧1
1.北京航空材料研究院 中国航空发动机集团航空材料先进腐蚀与防护重点实验室 北京 100095
2.海军研究院 上海 200436
Analysis of Application Requirements and Research Directions of Magnesium Alloys for Aircraft Engines Serving in Marine Environment
LUO Chen1(), WU Xiong2, SONG Hanqiang2, SUN Zhihua1, TANG Zhihui1
1.AECC Key Laboratory on Advanced Corrosion and Protection for Aviation Materials, Beijing Institute of Aeronautical Materials, Beijing 100095, China
2.Naval Research Institute, Shanghai 200436, China
全文: PDF(10182 KB)   HTML
摘要: 

对适航标准、通用规范的分析显示,目前国内外针对镁合金在飞机发动机上的使用要求仅发布了“应尽量少使用镁合金”等指导性的原则,而没有明确地规定镁合金应符合的具体限定条件,特别是海洋环境中必须采用的防护体系。针对飞机发动机用镁合金材料和防护工艺基础腐蚀性能数据不足,无法有效支撑材料、工艺选用和海洋环境适应性评价的现状,建议结合服役过程中镁合金结构遭遇的最严酷腐蚀环境,建立实验室加速实验当量环境谱,开展镁合金典型防护工艺的实验室加速实验及自然环境试验,确定腐蚀防护性能。重点建立防护体系破损镁合金试样腐蚀累积量随时间的变化规律,并与海洋环境服役飞机发动机用铝合金的试验结果进行对比,提出镁合金试验考核评价准则。开展镁合金及异种材料连接结构的实验室加速实验,验证典型结构的环境适应性。

关键词 镁合金飞机发动机限定条件腐蚀防护工艺    
Abstract

The analysis of airworthiness standards and general specifications shows that only guiding principles such as "use magnesium alloy as little as possible" have been issued at the present for the use of Mg-alloys in airplane engines at home and abroad, but the specific restrictions that should meet, especially the protective schemes that must be adopted in marine environments, are not been clearly specified yet. In view of the insufficient data related with the corrosion performance and protection technology of Mg-alloys for airplane engines, therefore, it is difficult to effectively support the selection of Mg-alloy materials and processes, as well as the assessment of their adaptability to marine environment. In response to the problem, it is suggested to establish an equivalent environmental spectrum for laboratory accelerated testing to facilitate the evaluation of typical Mg-alloy protection processes via laboratory accelerated test, by taking the harshest corrosion environment that Mg-alloy structures may encountered during service fully into account. Meanwhile, natural environmental corrosion testing should be carried out to determine the relevant corrosion protection performance. In addition, it is necessary to acquire how the corrosion degree of Mg-alloy substrate accumulates over time when the protective coating is damaged, then make a comparison with the corrosion performance of Al-alloys in the actual service condition of aircraft engines so that to put forward the evaluation criteria of Mg-alloys. Last but not least, the corrosion performance of the coupling structures of Mg-alloy with dissimilar materials should be assessed via accelerated laboratory tests in order to verify the environmental adaptability of such typical structures.

Key wordsmagnesium alloy    airplane engine    restriction    corrosion    protective process
收稿日期: 2023-06-01      32134.14.1005.4537.2023.162
ZTFLH:  TD 123  
通讯作者: 骆晨,E-mail: chen.luo.23@qq.com,研究方向为航空材料腐蚀与防护、环境试验与观测   
Corresponding author: LUO Chen, E-mail: chen.luo.23@qq.com   
作者简介: 骆晨,男,1984年生,博士,研究员,2011 年毕业于英国曼彻斯特大学,获博士学位。现就职于中国航发北京航空材料研 究院,研究员,硕士生导师。主要研究方向为航空材料腐蚀与防护、环境试验与观测。负责国家自然科学 基金、民机科研、国防技术基础、海装预研项目及型号任务20 余项,研究军用飞机关键材料及结构环境试 验和性能退化规律,建立环境试验和外场服役腐蚀损伤数据资源,为现役型号防腐改进和新型号选材提 供支撑;阐明多种军用关键结构材料的腐蚀损伤机理,建立失效判据,为关键结构日历寿命评定提供依 据;突破舰载平台环境监测、飞机结构局部环境监测及多项加速试验技术,建立飞机典型结构使用环境 谱、加速试验环境谱及当量关系,为日历寿命评定提供技术手段。兼任中国腐蚀与防护学会理事,中国航 空学会青年工作委员会委员,《中国腐蚀与防护学报》等期刊青年编委,中国科协第365 次、380 次青年科 学家论坛执行主席。入选中国科协首届青年人才托举工程。研究成果获国防科技工业三等奖1 项,中航工业集团二等奖2 项, 中国腐蚀与防护学会二等奖1项,发表论文36 篇,1 篇入选F5000。2023年获得中国腐蚀与防护学会杰出青年成就奖。

引用本文:

骆晨, 吴雄, 宋汉强, 孙志华, 汤智慧. 海洋环境服役飞机发动机镁合金使用要求和研究方向分析[J]. 中国腐蚀与防护学报, 2023, 43(4): 787-794.
LUO Chen, WU Xiong, SONG Hanqiang, SUN Zhihua, TANG Zhihui. Analysis of Application Requirements and Research Directions of Magnesium Alloys for Aircraft Engines Serving in Marine Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 787-794.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2023.162      或      https://www.jcscp.org/CN/Y2023/V43/I4/787

No.ComponentMaterialProtective schemePositionWorking conditionEngine
1Accessory gearbox inlet ductZM5Oxidation + 2 coats of primer + 1 coat of topcoatAccessory transmission componentsAirCertain turboprop engine
2Reducer front coverZM5Protective paintParts inside the airflow channelAirCertain turboprop engine
3Oil mist separator housingZM5Protective paintExternal parts of the engineAirCertain turboprop engine
4Front support housingZM2Strontium yellow composite paintEngine front channelAirCertain turbojet engine
5Auxiliary gearbox housing assemblyZM3Zn3ZrProtective paintEngine exteriorAir, lubricating oilCertain turbofan engine
表1  现役航空发动机镁合金结构应用情况汇总
图1  ZM5镁合金裸材试样和微弧氧化试样在万宁站大气暴露后的外观形貌
图2  ZM5镁合金裸材试样室内加速实验不同时间后的宏观形貌
图3  ZM5镁合金微弧氧化试样室内加速实验不同时间后的宏观形貌
No.StandardIssuing unitDate of issueClause numberContent
1MIL-HDBK-516B Airworthiness certification criteriaDepartment of Defense, USA2008A.4.2.19 Materials and ProcessesAll selected material systems and process methods must be verified for consistency with the environmental conditions and regulations used... Magnesium alloys are not suitable for saline environments and cannot be used without engineering reasons or approval
2CS-E Specification for engine certificationEuropean Union Aviation Safety Agency2003AMC E 130 FireproofMany magnesium alloys used in the manufacturing of engine components, such as magnesium chips or powder, are highly flammable when decomposed into very fine particles. Therefore, when using thin and fine magnesium alloys or magnesium alloys exposed to corrosion, friction, and high brushing speeds, the applicant should carefully evaluate the possibility of magnesium fire occurring in the entire system design and whether there are corresponding protective measures. If the assessment cannot rule out the possibility of magnesium fire, it should indicate that magnesium fire can be restricted within the engine area without causing hazardous effects
3JSSG-2007A Joint Service specification guide engines, aircraft, turbineDepartment of Defense, USA2007A.3.1.3 Materials, treatment, and partsMagnesium should be avoided in all parts of the engine. Magnesium alloys are restricted in use because they are highly susceptible to corrosion, especially in marine environments. A small pinhole crack in the protective coating can also cause corrosion beneath the residual material of the protective coating. Naval engines with magnesium alloy accessory casings have been damaged due to corrosion. Due to the use of incompatible materials between the front frame mounting holes and the tower shaft interface, air force engines equipped with magnesium alloy casings have suffered electrical corrosion damage. The gear gearbox using magnesium alloy propellers experienced severe corrosion problems, and later aluminum alloy was used to replace magnesium alloy
4GJB 241A-2010 General specification for aero turbojet and turbofan enginesPLA General Equipment Department, China20103.3.1 Materials, processes, and fastenersWhen using magnesium alloys, special approval from the user department is required
5GJB 242A-2018 General specification for aero turboprop and turboshaft engines2018
6GJB/Z 216-2004 Guide for the use of general specifications for aero turbojet and turbofan enginesPLA General Equipment Department, China20043.3.1.1.1Due to different environments, materials successfully used in air force engines may have problems when used in naval engines. Magnesium alloys are highly susceptible to corrosion, especially in marine environments, where a small pinhole in the protective layer can also cause corrosion. Both J79 and T76 engines abroad have experienced corrosion of magnesium alloy accessory casings or gear casings. Therefore, magnesium alloys should be used as appropriate with appropriate measures taken
7GJB 2635A-2015 Design and control requirements for corrosion protection of military aircraft20155.2 Material selectionAmong the metals used in aircraft structures, magnesium alloys have the worst corrosion resistance and are generally not suitable for structural design (especially for offshore aircraft and civil aircraft). But it can also be used in a good environment with a good protective system
8HB 7671-2000 Design requirements for corrosion prevention of aircraft structuresCommission of Science Technology and Industry for National Defense, PRC20006 Corrosion resistance and limit requirements of common materials for aircraft structures
表2  国内外适航标准和通用规范中镁合金使用要求条款的对比
1 Hu M. Lubricating oil system failure analysis [A]. Proceedings of Su-27 Aircraft Technology Theory Promotion and Research (I) [C]. 2000: 25
1 胡 猛. 滑油系统故障分析 [A]. 苏二七型飞机技术理论深化研修论文汇编 (一) [C]. 2000: 25
2 Ding W J. Magnesium Alloy Science and Technology [M]. Beijing: Science Press, 2007: 365
2 丁文江. 镁合金科学与技术 [M]. 北京: 科学出版社, 2007: 365
3 Wang J W, Liu X H, Wang F C, et al. High performance superlight Mg-Li alloy used in aerospace [J]. Dual Use Technol. Prod., 2013, (6): 21
3 王军武, 刘旭贺, 王飞超 等. 航空航天用高性能超轻镁锂合金 [J]. 军民两用技术与产品, 2013, (6): 21
4 Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
4 崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
5 Song G, StJohn D H. Corrosion of magnesium alloys in commercial engine coolants [J]. Mater. Corros., 2005, 56: 15
doi: 10.1002/(ISSN)1521-4176
6 Zhang P, Nie X, Northwood D O. Influence of coating thickness on the galvanic corrosion properties of Mg oxide in an engine coolant [J]. Surf. Coat. Technol., 2009, 203: 3271
doi: 10.1016/j.surfcoat.2009.04.012
7 Starostin M, Tamir S. New engine coolant for corrosion protection of magnesium alloys [J]. Mater. Corros., 2006, 57: 345
doi: 10.1002/(ISSN)1521-4176
8 Dai W, Wang J H, Luo S, et al. Fabrication of super-hydrophobic surface on AM60 Mg-alloy and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 301
8 代卫丽, 王景行, 罗 帅 等. AM60镁合金超疏水表面制备及防腐蚀性能的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 301
doi: 10.11902/1005.4537.2021.088
9 Yang X Y, Yang Y T, Lu X P, et al. Research progress of corrosion inhibitor for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 435
9 杨欣宇, 杨云天, 卢小鹏 等. 镁合金缓蚀剂研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 435
doi: 10.11902/1005.4537.2021.295
10 Zhou D M, Jiang L, Wang M T, et al. Effects of Ce(NO3)2 concentration and silicate sealing treatment on calcium phosphating film on surface of Mg-Zn-Y-Ca alloy for high speed railway corbel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 849
10 周殿买, 姜 磊, 王美婷 等. Ce(NO3)2浓度及硅酸盐封孔处理对高铁枕梁用Mg-Zn-Y-Ca合金表面钙系磷化膜的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 849
doi: 10.11902/1005.4537.2021.202
11 Wang X G, Gao K W, Yan L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 335
11 王晓鸽, 高克玮, 颜鲁春 等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 335
doi: 10.11902/1005.4537.2020.068
12 Liu Y X, Xu A Y. Characterization of pitting corrosion behavior of AZ91 Mg-alloy without and with MAO coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1034
12 刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1034
doi: 10.11902/1005.4537.2021.320
13 Chen Z N, Yong X Y, Chen X C. Micro-defects in micro-arc oxidation coatings on Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1
13 陈振宁, 雍兴跃, 陈晓春. 镁合金微弧氧化膜中微缺陷问题研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 1
doi: 10.11902/1005.4537.2021.012
14 Wei Z, Ma B J, Li L, et al. Effect of ultrasonic rolling pretreatment on corrosion resistance of micro-arc oxidation coating of Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 117
14 魏征, 马保吉, 李龙 等. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 117
doi: 10.11902/1005.4537.2020.035
15 Zheng L, Wang M T, Yu B Y. Research progress of cold spraying coating technology for Mg-alloy [J]. J. Chin. Soci. Corros. Prot., 2021, 41: 22
15 郑 黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 22
16 Velikiy V I, Yares’ko K I, Shalomeev V A, et al. Prospective magnesium alloys with elevated level of properties for the aircraft engine industry [J]. Met. Sci. Heat Treat., 2014, 55: 492
doi: 10.1007/s11041-014-9660-x
17 Wu G H, Chen Y S, Ding W J. Current research, application and future prospect of magnesium alloys in aerospace industry [J]. Manned Spaceflight, 2016, 22: 281
17 吴国华, 陈玉狮, 丁文江. 镁合金在航空航天领域研究应用现状与展望 [J]. 载人航天, 2016, 22: 281
18 Fei Y J. Application of magnesium alloys in the aerospace industry [J]. Adv. Mater. Ind., 2018, (12): 15
18 费有静. 镁合金在航空航天领域中的应用 [J]. 新材料产业, 2018, (12): 15
19 Zhu R X, Na J Y. Corrosion analysis on magnesium alloy component in Aero-engine lubricating oil system [A]. Procedings of 3rd National Aerospace Equipment Failure Analysis Conference [C]. Kunming, 2000: 148
19 朱绒霞, 那静彦. 航空发动机油油系统镁合金部件腐蚀原因分析 [A]. 全国第三届航空航天装备失效分析会议论文集 [C]. 昆明, 2000: 148
20 Huang Y S, Yu J H, Feng B D. Research on sand mould casting process for an aero-engine oil distributing sleeve [J]. New Technol. New Process, 2014, (5): 120
20 黄艳松, 余继华, 冯保东. 某航空发动机分油套筒砂型铸造工艺研究 [J]. 新技术新工艺, 2014, (5): 120
21 Liu Z Q, He X X, Qi K, et al. Galvanic corrosion behavior for galvanic couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1016
21 刘泽琪, 何潇潇, 祁 康 等. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1016
doi: 10.11902/1005.4537.2021.355
22 Du R X, Li Y H. Microbiological corrosion and protection of magnesium alloys of lubricate system of aero- engine [J]. Light Met., 2004, (12): 35
22 朱绒霞, 李亚会. 航空发动机滑油系统镁合金微生物腐蚀与防护 [J]. 轻金属, 2014, (12): 35
23 Tang Z F, Liu X K, Ren G M. Application requirements on magnesium alloy in Aero-engine worthiness standards [J]. Aeronaut. Stand. Qual., 2014, (6): 26
23 唐正府, 刘兴科, 任光明. 航空发动机适航标准中镁合金材料使用要求 [J]. 航空标准化与质量, 2014, (6): 26
[1] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[2] 戚震辉, 江涛, 赵茂锦, 蔡钟琪, 王瑞晨, 尚洁, 姚纪政, 葛岩. 飞机燃油系统微生物污染主动防治涂层研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 821-827.
[3] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[4] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[5] 袁磊, 谢新, 陈明辉, 李烽杰, 王福会. 20钢及其搪瓷涂层在400 ℃下的氧化和NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 890-895.
[6] 白一涵, 张航, 朱泽洁, 王疆瑛, 曹发和. 缝隙腐蚀内部微区离子浓度监测的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[7] 倪雨朦, 于英杰, 严慧, 王嵬, 李瑛. 铜铝/镍石墨可磨耗封严涂层相选择性溶解机制有限元研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[8] 吴佳佳, 徐鸣, 王鹏, 张盾. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[9] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[10] 郭涛, 黄峰, 胡骞, 刘静. 9Ni钢铸坯在900~1250 ℃空气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[11] 吴多利, 吴昊天, 孙珲, 史建军, 魏新龙, 张超. 激光熔覆高温防护涂层研究现状及发展方向[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[12] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[13] 倪雅, 施方长, 戚继球. Ce添加对Zn-0.6Cu-0.3Ti合金组织与耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[14] 黄志凤, 雍奇文, 房蕊, 谢治辉. AZ31镁合金表面超疏水耐腐蚀镍基复合涂层[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
[15] 郝文魁, 陈新, 徐玲铃, 韩钰, 陈云, 黄路遥, 祝志祥, 杨丙坤, 王晓芳, 张强. 电网碳钢、镀锌钢大气腐蚀等级图绘制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.