|
|
基于表面微结构复制与润湿性调控的水下仿生防污技术研究进展 |
王利1, 马力1, 雷黎2( ), 崔中雨2 |
1.中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266237 2.中国海洋大学材料科学与工程学院 青岛 266100 |
|
Research Progress of Underwater Bionic Antifouling Technology Based on Surface Microtopography Replication and Wettability Control |
WANG Li1, MA Li1, LEI Li2( ), CUI Zhongyu2 |
1.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China 2.School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China |
引用本文:
王利, 马力, 雷黎, 崔中雨. 基于表面微结构复制与润湿性调控的水下仿生防污技术研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 242-250.
Li WANG,
Li MA,
Li LEI,
Zhongyu CUI.
Research Progress of Underwater Bionic Antifouling Technology Based on Surface Microtopography Replication and Wettability Control. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 242-250.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.111
或
https://www.jcscp.org/CN/Y2023/V43/I2/242
|
[1] |
Fu J M, Zhang H, Guo Z B, et al. Combat biofouling with microscopic ridge-like surface morphology: a bioinspired study [J]. J. R. Soc. Interface, 2018, 15: 20170823
doi: 10.1098/rsif.2017.0823
|
[2] |
Han X, Wu J H, Zhang X H, et al. The progress on antifouling organic coating: From biocide to biomimetic surface [J]. J. Mater. Sci. Technol., 2021, 61: 46
doi: 10.1016/j.jmst.2020.07.002
|
[3] |
Almeida E, Diamantino T C, De Sousa O. Marine paints: the particular case of antifouling paints [J]. Prog. Org. Coat., 2007, 59: 2
doi: 10.1016/j.porgcoat.2007.01.017
|
[4] |
Schultz M P, Bendick J A, Holm E R, et al. Economic impact of biofouling on a naval surface ship [J]. Biofouling, 2011, 27: 87
doi: 10.1080/08927014.2010.542809
pmid: 21161774
|
[5] |
Selim M S, El-Safty S A, Shenashen M A, et al. Progress in biomimetic leverages for marine antifouling using nanocomposite coatings [J]. J. Mater. Chem., 2020, 8B: 3701
|
[6] |
Maan A M C, Hofman A H, De Vos W M, et al. Recent developments and practical feasibility of polymer-based antifouling coatings [J]. Adv. Funct. Mater., 2020, 30: 2000936
doi: 10.1002/adfm.202000936
|
[7] |
Bai X Q, Xie G T, Fan H, et al. Study on biomimetic preparation of shell surface microstructure for ship antifouling [J]. Wear, 2013, 306: 285
doi: 10.1016/j.wear.2012.11.020
|
[8] |
Brzozowska A M, Parra-Velandia F J, Quintana R, et al. Biomimicking micropatterned surfaces and their effect on marine biofouling [J]. Langmuir, 2014, 30: 9165
doi: 10.1021/la502006s
pmid: 25017490
|
[9] |
Bixler G D, Bhushan B. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces [J]. Nanoscale, 2013, 5: 7685
doi: 10.1039/c3nr01710a
pmid: 23884183
|
[10] |
Ermis M, Antmen E, Hasirci V. Micro and nanofabrication methods to control cell-substrate interactions and cell behavior: a review from the tissue engineering perspective [J]. Bioact. Mater., 2018, 3: 355
doi: 10.1016/j.bioactmat.2018.05.005
pmid: 29988483
|
[11] |
Chen L R, Duan Y Y, Cui M, et al. Biomimetic surface coatings for marine antifouling: natural antifoulants, synthetic polymers and surface microtopography [J]. Sci. Total Environ., 2021, 766: 144469
doi: 10.1016/j.scitotenv.2020.144469
|
[12] |
Schumacher J F, Aldred N, Callow M E, et al. Species-specific engineered antifouling topographies: correlations between the settlement of algal zoospores and barnacle cyprids [J]. Biofouling, 2007, 23: 307
pmid: 17852066
|
[13] |
Chen Z F, Zhao W J, Xu J H, et al. Designing environmentally benign modified silica resin coatings with biomimetic textures for antibiofouling [J]. RSC Adv., 2015, 5: 36874
doi: 10.1039/C5RA04658K
|
[14] |
Gangadoo S, Chandra S, Power A, et al. Biomimetics for early stage biofouling prevention: templates from insect cuticles [J]. J. Mater. Chem., 2016, 4B: 5747
|
[15] |
Liu Y H, Li G J. A new method for producing “Lotus Effect” on a biomimetic shark skin [J]. J. Colloid Interface Sci., 2012, 388: 235
doi: 10.1016/j.jcis.2012.08.033
|
[16] |
Wan F, Pei X W, Yu B, et al. Grafting polymer brushes on biomimetic structural surfaces for anti-algae fouling and foul release [J]. ACS Appl. Mater. Interfaces, 2012, 4: 4557
doi: 10.1021/am300912w
|
[17] |
Chapman J, Hellio C, Sullivan T, et al. Bioinspired synthetic macroalgae: examples from nature for antifouling applications [J]. Int. Biodeterior. Biodegrad., 2014, 86: 6
doi: 10.1016/j.ibiod.2013.03.036
|
[18] |
Zhao L M, Chen R R, Lou L J, et al. Layer-by-layer-assembled antifouling films with surface microtopography inspired by Laminaria japonica [J]. Appl. Surf. Sci., 2020, 511: 145564
doi: 10.1016/j.apsusc.2020.145564
|
[19] |
Sun K, Yang H, Xue W, et al. Anti-biofouling superhydrophobic surface fabricated by picosecond laser texturing of stainless steel [J]. Appl. Surf. Sci., 2018, 436: 263
doi: 10.1016/j.apsusc.2017.12.012
|
[20] |
Young T. III. An essay on the cohesion of fluids [J]. Philos. Trans., 1805, 95: 65
|
[21] |
Guan Y, Chen R R, Sun G H, et al. The mussel-inspired micro-nano structure for antifouling: a flowering tree [J]. J. Colloid Interface Sci., 2021, 603: 307
doi: 10.1016/j.jcis.2021.06.095
|
[22] |
Bing W, Tian L M, Wang Y J, et al. Bio-inspired non-bactericidal coating used for antibiofouling [J]. Adv. Mater. Technol., 2019, 4: 1800480
doi: 10.1002/admt.201800480
|
[23] |
Wan F, Ye Q, Yu B, et al. Multiscale hairy surfaces for nearly perfect marine antibiofouling [J]. J. Mater. Chem., 2013, 1B: 3599
|
[24] |
Liu Y L, Zhang D, Ren B P, et al. Molecular simulations and understanding of antifouling zwitterionic polymer brushes [J]. J. Mater. Chem., 2020, 8B: 3814
|
[25] |
Song B Y, Zhang E S, Han X F, et al. Engineering and application perspectives on designing an antimicrobial surface [J]. ACS Appl. Mater. Interfaces, 2020, 12: 21330
doi: 10.1021/acsami.9b19992
|
[26] |
Li D X, Wei Q L, Wu C X, et al. Superhydrophilicity and strong salt-affinity: Zwitterionic polymer grafted surfaces with significant potentials particularly in biological systems [J]. Adv. Colloid Interface Sci., 2020, 278: 102141
doi: 10.1016/j.cis.2020.102141
|
[27] |
Higaki Y, Nishida J, Takenaka A, et al. Versatile inhibition of marine organism settlement by zwitterionic polymer brushes [J]. Polym. J., 2015, 47: 811
doi: 10.1038/pj.2015.77
|
[28] |
Knowles B R, Wagner P, Maclaughlin S, et al. Silica nanoparticles functionalized with zwitterionic sulfobetaine siloxane for application as a versatile antifouling coating system [J]. ACS Appl. Mater. Interfaces, 2017, 9: 18584
doi: 10.1021/acsami.7b04840
|
[29] |
Jin J, Kim J Y, Choi W, et al. Incorporation of carboxybetaine methacrylate into poly (methyl methacrylate) to prevent multi-species biofilm formation [J]. J. Ind. Eng. Chem., 2020, 86: 194
doi: 10.1016/j.jiec.2020.03.003
|
[30] |
Wang W, Lu Y, Zhu H, et al. Superdurable coating fabricated from a double-sided tape with long term “zero” bacterial adhesion [J]. Adv. Mater., 2017, 29: 1606506
doi: 10.1002/adma.201606506
|
[31] |
Zhang L L, Sha J A, Chen R R, et al. Surface plasma Ag-decorated Bi5O7I microspheres uniformly distributed on a zwitterionic fluorinated polymer with superfunctional antifouling property [J]. Appl. Catal., 2020, 271B: 118920
|
[32] |
Zhang L L, Sha J A, Chen R R, et al. Three-dimensional flower-like shaped Bi5O7I particles incorporation zwitterionic fluorinated polymers with synergistic hydration-photocatalytic for enhanced marine antifouling performance [J]. J. Hazard. Mater., 2020, 389: 121854
doi: 10.1016/j.jhazmat.2019.121854
|
[33] |
Xu X Y, Chen R R, Sun G H, et al. A facile hydrophilic modification strategy initiated by flame treatment of silicone coatings for marine antifouling application [J]. Appl. Surf. Sci., 2022, 580: 152177
doi: 10.1016/j.apsusc.2021.152177
|
[34] |
Guo H S, Yang J, Zhao W Q, et al. Direct formation of amphiphilic crosslinked networks based on PVP as a marine anti-biofouling coating [J]. Chem. Eng. J., 2019, 374: 1353
doi: 10.1016/j.cej.2019.06.025
|
[35] |
Zhao W Q, Yang J, Guo H S, et al. Slime-resistant marine anti-biofouling coating with PVP-based copolymer in PDMS matrix [J]. Chem. Eng. Sci., 2019, 207: 790
doi: 10.1016/j.ces.2019.06.042
|
[36] |
Zhang H, Li Y, Tian S, et al. A switchable zwitterionic ester and capsaicin copolymer for multifunctional marine antibiofouling coating [J]. Chem. Eng. J., 2022, 436: 135072
doi: 10.1016/j.cej.2022.135072
|
[37] |
Yang H C, Guo X J, Chen R R, et al. A hybrid sponge with guanidine and phytic acid enriched surface for integration of antibiofouling and uranium uptake from seawater [J]. Appl. Surf. Sci., 2020, 525: 146611
doi: 10.1016/j.apsusc.2020.146611
|
[38] |
Wenzel R N. Resistance of solid surfaces to wetting by water [J]. Ind. Eng. Chem., 1936, 28: 988
doi: 10.1021/ie50320a024
|
[39] |
Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Trans. Faraday Soc., 1944, 40: 546
doi: 10.1039/tf9444000546
|
[40] |
Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces [J]. Ann. Bot., 1997, 79: 667
doi: 10.1006/anbo.1997.0400
|
[41] |
Aishwarya S, Shanthi J, Swathi R. Surface energy calculation using Hamaker’s constant for polymer/silane hydrophobic thin films [J]. Mater. Lett., 2019, 253: 409
doi: 10.1016/j.matlet.2019.07.123
|
[42] |
Zhou H, Wang H X, Niu H T, et al. Recent progress in durable and self-healing super-nonwettable fabrics [J]. Adv. Mater. Interfaces, 2018, 5: 1800461
doi: 10.1002/admi.201800461
|
[43] |
Bodkhe R B, Stafslien S J, Daniels J, et al. Zwitterionic siloxane-polyurethane fouling-release coatings [J]. Prog. Org. Coat., 2015, 78: 369
|
[44] |
Sommer S A, Byrom J R, Fischer H D, et al. Effects of pigmentation on siloxane-polyurethane coatings and their performance as fouling-release marine coatings [J]. J. Coat. Technol. Res., 2011, 8: 661
doi: 10.1007/s11998-011-9340-3
|
[45] |
Selim M S, Elmarakbi A, Azzam A M, et al. Eco-friendly design of superhydrophobic nano-magnetite/silicone composites for marine foul-release paints [J]. Prog. Org. Coat., 2018, 116: 21
|
[46] |
Selim M S, Yang H, Wang F Q, et al. Silicone/ZnO nanorod composite coating as a marine antifouling surface [J]. Appl. Surf. Sci., 2019, 466: 40
doi: 10.1016/j.apsusc.2018.10.004
|
[47] |
Selim M S, El-Safty S A, El-Sockary M A, et al. Smart photo-induced silicone/TiO2 nanocomposites with dominant [110] exposed surfaces for self-cleaning foul-release coatings of ship hulls [J]. Mater. Design, 2016, 101: 218
|
[48] |
Selim M S, Shenashen M A, El-Safty S A, et al. Recent progress in marine foul-release polymeric nanocomposite coatings [J]. Prog. Mater. Sci., 2017, 87: 1
doi: 10.1016/j.pmatsci.2017.02.001
|
[49] |
Selim M S, Yang H, El-Safty S A, et al. Superhydrophobic coating of silicone/β-MnO2 nanorod composite for marine antifouling [J]. Colloids Surf., 2019, 570A: 518
|
[50] |
Selim M S, Yang H, Wang F Q, et al. Superhydrophobic silicone/SiC nanowire composite as a fouling release coating material [J]. J. Coat. Technol. Res., 2019, 16: 1165
doi: 10.1007/s11998-019-00192-8
|
[51] |
Krishnan S, Wang N, Ober C K, et al. Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom navicula and the green alga ulva [J]. Biomacromolecules, 2006, 7: 1449
doi: 10.1021/bm0509826
|
[52] |
Martinelli E, Suffredini M, Galli G, et al. Amphiphilic block copolymer/poly (dimethylsiloxane) (PDMS) blends and nanocomposites for improved fouling-release [J]. Biofouling, 2011, 27: 529
doi: 10.1080/08927014.2011.584972
pmid: 21614701
|
[53] |
Pollack K A, Imbesi P M, Raymond J E, et al. Hyperbranched fluoropolymer-polydimethylsiloxane-poly (ethylene glycol) cross-Linked terpolymer networks designed for marine and biomedical applications: heterogeneous nontoxic antibiofouling surfaces [J]. ACS Appl. Mater. Interfaces, 2014, 6: 19265
doi: 10.1021/am505296n
|
[54] |
Galli G, Barsi D, Martinelli E, et al. Copolymer films containing amphiphilic side chains of well-defined fluoroalkyl-segment length with biofouling-release potential [J]. RSC Adv., 2016, 6: 67127
doi: 10.1039/C6RA15104C
|
[55] |
Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity [J]. Nature, 2011, 477: 443
doi: 10.1038/nature10447
|
[56] |
Epstein A K, Wong T S, Belisle R A, et al. Liquid-infused structured surfaces with exceptional anti-biofouling performance [J]. Proc. Natl. Acad. Sci. USA, 2012, 109: 13182
doi: 10.1073/pnas.1201973109
pmid: 22847405
|
[57] |
Qiu Z H, Qiu R, Xiao Y M, et al. Slippery liquid-infused porous surface fabricated on CuZn: a barrier to abiotic seawater corrosion and microbiologically induced corrosion [J]. Appl. Surf. Sci., 2018, 457: 468
doi: 10.1016/j.apsusc.2018.06.139
|
[58] |
Kim P, Kreder M J, Alvarenga J, et al. Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates [J]. Nano Lett., 2013, 13: 1793
doi: 10.1021/nl4003969
pmid: 23464578
|
[59] |
Ware C S, Smith-Palmer T, Peppou-Chapman S, et al. Marine antifouling behavior of lubricant-infused nanowrinkled polymeric surfaces [J]. ACS Appl. Mater. Interfaces, 2018, 10: 4173
doi: 10.1021/acsami.7b14736
|
[60] |
Wang P, Zhang D, Sun S M, et al. Fabrication of slippery lubricant-infused porous surface with high underwater transparency for the control of marine biofouling [J]. ACS Appl. Mater. Interfaces, 2017, 9: 972
doi: 10.1021/acsami.6b09117
|
[61] |
Yang W F, Lin P, Cheng D C, et al. Contribution of charges in polyvinyl alcohol networks to marine antifouling [J]. ACS Appl. Mater. Interfaces, 2017, 9: 18295
doi: 10.1021/acsami.7b04079
|
[62] |
Su M J, Liu Y, Zhang Y H, et al. Robust and underwater superoleophobic coating with excellent corrosion and biofouling resistance in harsh environments [J]. Appl. Surf. Sci., 2018, 436: 152
doi: 10.1016/j.apsusc.2017.11.215
|
[63] |
Chen K L, Zhou S X, Wu L M. Self-healing underwater superoleophobic and antibiofouling coatings based on the assembly of hierarchical microgel spheres [J]. ACS Nano, 2016, 10: 1386
doi: 10.1021/acsnano.5b06816
pmid: 26687925
|
[64] |
Li Y K, Chen R R, Feng Y H, et al. Synthesis of amphiphilic acrylate boron fluorinated polymers with antifouling behavior [J]. Ind. Eng. Chem. Res., 2019, 58: 8016
doi: 10.1021/acs.iecr.8b06337
|
[65] |
Ge J L, Zhang J C, Wang F, et al. Superhydrophilic and underwater superoleophobic nanofibrous membrane with hierarchical structured skin for effective oil-in-water emulsion separation [J]. J. Mater. Chem., 2017, 5A: 497
|
[66] |
Sun X H, Li Q, Guo Z R, et al. Study on the core-shell reversion of PSBMA-b-PLMA nanoparticles for the fabrication of antifouling coatings [J]. ACS Appl. Mater. Interfaces, 2019, 11: 21323
doi: 10.1021/acsami.9b02258
|
[67] |
Gudipati C S, Greenlief C M, Johnson J A, et al. Hyperbranched fluoropolymer and linear poly (ethylene glycol) based amphiphilic crosslinked networks as efficient antifouling coatings: an insight into the surface compositions, topographies, and morphologies [J]. J. Polym. Sci., 2004, 42A: 6193
|
[68] |
Galhenage T P, Webster D C, Moreira A M S, et al. Poly (ethylene) glycol-modified, amphiphilic, siloxane-polyurethane coatings and their performance as fouling-release surfaces [J]. J. Coat. Technol. Res., 2017, 14: 307
doi: 10.1007/s11998-016-9862-9
|
[69] |
Leonardi A K, Ober C K. Polymer-based marine antifouling and fouling release surfaces: strategies for synthesis and modification [J]. Annu. Rev. Chem. Biomol. Eng., 2019, 10: 241
doi: 10.1146/annurev-chembioeng-060718-030401
pmid: 31173523
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|