|
|
CCUS系统中CO2 注入井管材腐蚀研究进展 |
原玉1, 向勇1( ), 李晨2, 赵雪会3, 闫伟4, 姚二冬4 |
1.中国石油大学(北京)机械与储运工程学院 北京 102249 2.广西大学机械工程学院 南宁 530004 3.中国石油集团石油管工程技术研究院 石油管材及装备材料服役行为与结构安全国家重点实验室 西安 710077 4.中国石油大学(北京)非常规油气科学技术研究院 北京 102249 |
|
Research Progress on Corrosion of CO2 Injection Well Tubing in CCUS System |
YUAN Yu1, XIANG Yong1( ), LI Chen2, ZHAO Xuehui3, YAN Wei4, YAO Erdong4 |
1.College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China 2.College of Mechanical Engineering, Guangxi University, Nanning 530004, China 3.State Key Laboratory of Service Behavior and Structural Safety of Petroleum Pipe and Equipment Materials, Petroleum Pipe Engineering Technology Research Institute of CNPC, Xi'an 710077, China 4.Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, China |
引用本文:
原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
Yu YUAN,
Yong XIANG,
Chen LI,
Xuehui ZHAO,
Wei YAN,
Erdong YAO.
Research Progress on Corrosion of CO2 Injection Well Tubing in CCUS System[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 15-26.
1 |
BP. Statistical review of world energy-2022 [R]. London: BP, 2022
|
2 |
Cai B F, Li Q, Zhang X, et al. China annual report on carbon dioxide capture, utilization, and storage (CCUS) (2021)——Study on China's CCUS path[R]. Beijing: Chinese Academy of Environmental Planning, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, The Administrative Center for China's Agenda 21, 2021
|
2 |
蔡博峰, 李 琦, 张 贤 等. 中国二氧化碳捕集利用与封存 (CCUS) 年度报告 (2021)―中国 CCUS 路径研究 [R]. 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心. 2021
|
3 |
Turan G, Zapantis A, Kearns D, et al. Global status of CCS 2021 [R]. Australia: CCS, 2021
|
3 |
Turan G, Zapantis A, Kearns D 等. 全球碳捕集与封存现状2021 [R]. 澳大利亚: 全球碳捕集与封存研究院, 2021
|
4 |
Yuan S Y, Ma D S, Li J S, et al. Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization [J]. Pet. Explor. Dev., 2022, 49: 828
|
4 |
袁士义, 马德胜, 李军诗 等. 二氧化碳捕集、驱油与埋存产业化进展及前景展望 [J]. 石油勘探与开发, 2022, 49: 828
doi: 10.11698/PED.20220212
|
5 |
Bachu S, Watson T L. Review of failures for wells used for CO2 and acid gas injection in Alberta, Canada [J]. Energy Procedia, 2009, 1: 3531
doi: 10.1016/j.egypro.2009.02.146
|
6 |
Chen S S, Wang H X, Liu Y X, et al. Root cause analysis of tubing and casing failures in low-temperature carbon dioxide injection well [J]. Eng. Fail. Anal., 2019, 104: 873
doi: 10.1016/j.engfailanal.2019.05.034
|
7 |
Laumb J D, Glazewski K A, Hamling J A, et al. Corrosion and failure assessment for CO2 EOR and associated storage in the weyburn field [J]. Energy Procedia, 2017, 114: 5173
doi: 10.1016/j.egypro.2017.03.1671
|
8 |
Zhao X H, He Z W, Liu J W, et al. Research status of CCUS corrosion control technology [J]. Pet. Tubular Goods Instrum., 2017, 3(3): 1
|
8 |
赵雪会, 何治武, 刘进文 等. CCUS腐蚀控制技术研究现状 [J]. 石油管材与仪器, 2017, 3(3): 1
|
9 |
Zhao X H, Huang W, Li H, et al. Research status and suggestions of CCUS technology to promote the rapid realization of "dual carbon" goal [J]. Pet. Tubular Goods Instrum., 2021, 7(6): 26
|
9 |
赵雪会, 黄 伟, 李宏伟 等. 促进“双碳”目标快速实现的CCUS技术研究现状及建议 [J]. 石油管材与仪器, 2021, 7(6): 26
|
10 |
Davison J. Performance and costs of power plants with capture and storage of CO2 [J]. Energy, 2007, 32: 1163
doi: 10.1016/j.energy.2006.07.039
|
11 |
Xing L R, Wu Z W, Zhang R Y. Development status and prospect analysis of CCUS industry [J]. Int. Pet. Econo., 2021, 29(8): 99
|
11 |
邢力仁, 武正弯, 张若玉. CCUS产业发展现状与前景分析 [J]. 国际石油经济, 2021, 29(8): 99
|
12 |
De Visser E, Hendriks C, Barrio M, et al. Dynamis CO2 quality recommendations [J]. Int. J. Greenhouse Gas Control, 2008, 2: 478
doi: 10.1016/j.ijggc.2008.04.006
|
13 |
Halseid M, Dugstad A, Morland B. Corrosion and bulk phase reactions in CO2 transport pipelines with impurities: review of recent published studies [J]. Energy Procedia, 2014, 63: 2557
|
14 |
Shirley P, Myles P. Quality guidelines for energy system studies: CO2 impurity design parameters [R]. Pittsburgh: National Energy Technology Laboratory, 2019
|
15 |
Gong P, Zhang C M, Wu Z Q, et al. Study on the effect of CaCO3 whiskers on carbonized self-healing cracks of cement paste: application in CCUS cementing [J]. Constr. Build. Mater., 2022, 321: 126368
doi: 10.1016/j.conbuildmat.2022.126368
|
16 |
Zhou Y B, Wang R, He Y F, et al. Analysis and comparison of typical cases of CO2 geological storage in saline aquifer [J]. Pet. Geol. Recovery Effic., 2023, 30(2): 162
|
16 |
周银邦, 王 锐, 何应付 等. 咸水层CO2地质封存典型案例分析及对比 [J]. 油气地质与采收率, 2023, 30(2): 162
|
17 |
Xu T, Yang Z, Zhou T Y, et al. Carbon capture and storage (CCS) and CO2 flooding technology development in the United States and China [J]. Int. Pet. Econ., 2016, 24(4): 12
|
17 |
徐 婷, 杨 震, 周体尧 等. 中美二氧化碳捕集和驱油发展状况分析 [J]. 国际石油经济, 2016, 24(4): 12
|
18 |
Xiang Y, Hou L, Du M, et al. Research progress and development prospect of CCUS-EOR technologies in China [J]. Pet. Geol. Recovery Effic., 2023, 30(2): 1
|
18 |
向 勇, 侯 力, 杜猛 等. 中国CCUS-EOR技术研究进展及发展前景 [J]. 油气地质与采收率, 2023, 30(2): 1
|
19 |
Zhang Z, Li Y J, Zhang C, et al. Wellbore integrity design of high-temperature gas wells containing CO2 [J]. Nat. Gas Ind., 2013, 33(9): 79
|
19 |
张 智, 李炎军, 张 超 等. 高温含CO2气井的井筒完整性设计 [J]. 天然气工业, 2013, 33(9): 79
|
20 |
Hickman S H, Hsieh P A, Mooney W D, et al. Scientific basis for safely shutting in the Macondo well after the April 20, 2010 Deepwater horizon blowout [J]. Proc. Natl. Acad. Sci. USA, 2012, 109: 20268
doi: 10.1073/pnas.1115847109
|
21 |
Lindeberg E, Bergmo P, Torsæter M, et al. Aliso canyon leakage as an analogue for worst case CO2 leakage and quantification of acceptable storage loss [J]. Energy Procedia, 2017, 114: 4279
|
22 |
Wan L F, Li G S, Huang Z W, et al. Research on the principles of wellbore multiphase flow during supercritical fluid influx [J]. Drill. Prod. Technol, 2012, 35(3): 9
|
22 |
万立夫, 李根生, 黄中伟 等. 超临界流体侵入井筒多相流动规律研究 [J]. 钻采工艺, 2012, 35(3): 9
|
23 |
Zhang Z, Shi T H, Wu Y, et al. Discussion of supercritical carbon dioxide and hydrogen sulfide induced drilling and production accidents in high sour gas well [J]. Drill. Prod. Technol, 2007, 30(1): 94
|
23 |
张 智, 施太和, 吴 优 等. 高酸性气井超临界态二氧化碳硫化氢的相态变化诱发钻采事故探讨 [J]. 钻采工艺, 2007, 30(1): 94
|
24 |
Choi Y S, Young D, Nešić S, et al. Wellbore integrity and corrosion of carbon steel in CO2 geologic storage environments: a literature review [J]. Int. J. Greenhouse Gas Control, 2013, 16: S70
doi: 10.1016/j.ijggc.2012.12.028
|
25 |
Bai M X, Zhang Z C, Fu X F. A review on well integrity issues for CO2 geological storage and enhanced gas recovery [J]. Renewable Sustainable Energy Rev., 2016, 59: 920
|
26 |
Liu Z Y, Ren T, Zhang D P, et al. Experimental study on failure risk of CO2 flooding injection pipe under repeated high and low temperature impacts [J]. China Saf. Sci. J., 2015, 25(7): 80
|
26 |
刘振翼, 任 韬, 张德平 等. 高低温冲击条件下CO2驱注入管失效危险性试验研究 [J]. 中国安全科学学报, 2015, 25(7): 80
|
27 |
Xiang Y, Wang Z, Li Z, et al. Effect of exposure time on the corrosion rates of X70 steel in supercritical CO2/SO2/O2/H2O environments [J]. Corrosion, 2013, 69(3): 251
|
28 |
Jones D A. Evidence of localized surface plasticity during stress corrosion cracking [A]. Corrosion `95: National Association of Corrosion Engineers (NACE) International Annual Conference and Corrosion Show [C]. Orlando, 1995
|
29 |
Sieradzki K, Newman R C. Brittle behavior of ductile metals during stress-corrosion cracking [J]. Philos. Mag., 1985, 51A: 95
|
30 |
Sieradzki K, Newman R C. Stress-corrosion cracking [J]. J. Phys. Chem. Solids, 1987, 48: 1101
doi: 10.1016/0022-3697(87)90120-X
|
31 |
Woodtli J, Kieselbach R. Damage due to hydrogen embrittlement and stress corrosion cracking [J]. Eng. Fail. Anal., 2000, 7: 427
doi: 10.1016/S1350-6307(99)00033-3
|
32 |
Chu W Y, Qiao L J, Gao K W. Anodic dissolution-type stress corrosion [J]. Chin. Sci. Bull., 2000, 45: 2581
doi: 10.1360/csb2000-45-24-2581
|
32 |
褚武扬, 乔利杰, 高克玮. 阳极溶解型应力腐蚀 [J]. 科学通报, 2000, 45: 2581
|
33 |
Liu C S, Li Z Z, Chen C F. Stress corrosion cracking of stainless steel [J]. Surf. Technol., 2020, 49(3): 1
|
33 |
刘传森, 李壮壮, 陈长风. 不锈钢应力腐蚀开裂综述 [J]. 表面技术, 2020, 49(3): 1
|
34 |
Xu Y Z. Research progress of stress corrosion [J]. Petrochem. Saf. Environ. Prot. Technol., 2021, 37(1): 26
|
34 |
徐亚洲. 应力腐蚀研究进展 [J]. 石油化工安全环保技术, 2021, 37(1): 26
|
35 |
Yu J, Zhang D P, Pan R S, et al. Electrochemical noise of stress corrosion cracking of P110 tubing steel in sulphur-containing downhole annular fluid [J]. Acta Metall. Sin., 2018, 54: 1399
doi: 10.11900/0412.1961.2018.00033
|
35 |
余 军, 张德平, 潘若生 等. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征 [J]. 金属学报, 2018, 54: 1399
|
36 |
Zhao X H, Liu J L, Zeng R H, et al. Effect of Cl- concentration on the stress corrosion sensitivity of martensitic stainless steel in saturated CO2 solution [J]. Mater. Prot., 2021, 54(1): 36
|
36 |
赵雪会, 刘君林, 曾瑞华 等. 饱和CO2溶液中Cl-浓度对马氏体不锈钢应力腐蚀敏感性的影响 [J]. 材料保护, 2021, 54(1): 36
|
37 |
Benac D J, Cherolis N, Wood D. Managing cold temperature and brittle fracture hazards in pressure vessels [J]. J. Fail. Anal. Prev., 2016, 16: 55
doi: 10.1007/s11668-015-0052-3
|
38 |
Huang J Y, Wu W P, Liu W, et al. Mechanism for stress corrosion cracking of carbon steel in environment containing hydrogen sulfide/carbon dioxide [J]. Mater. Prot., 2011, 44(8): 32
|
38 |
黄金营, 吴伟平, 柳 伟 等. 碳钢在H2S/CO2体系中的应力腐蚀开裂机理 [J]. 材料保护, 2011, 44(8): 32
|
39 |
Ugiansky G M, Payer J H. Stress Corrosion Cracking: The Slow Strain-Rate Technique [M]. Philadelphia: ASTM International, 1979
|
40 |
Zeng Y M, Li K Y. Influence of SO2 on the corrosion and stress corrosion cracking susceptibility of supercritical CO2 transportation pipelines [J]. Corros. Sci., 2020, 165: 108404
doi: 10.1016/j.corsci.2019.108404
|
41 |
Sun C, Yan X L, Sun J B, et al. Unraveling the effect of O2, NO2 and SO2 impurities on the stress corrosion behavior of X65 steel in water-saturated supercritical CO2 streams [J]. Corros. Sci., 2022, 209: 110729
doi: 10.1016/j.corsci.2022.110729
|
42 |
Li K Y, Zeng Y M. Long-term corrosion and stress corrosion cracking of X65 steel in H2O-saturated supercritical CO2 with SO2 and O2 impurities [J]. Constr. Build. Mater., 2023, 362: 129746
doi: 10.1016/j.conbuildmat.2022.129746
|
43 |
Liu R K. Stress corrosion cracking behavior and prevention of high strength tubing steels in typical H2S/CO2 annulus environment [D]. Beijing: University of Science and Technology Beijing, 2015
|
43 |
刘然克. 典型H2S/CO2环空环境下高强油套管钢应力腐蚀机理与防护 [D]. 北京: 北京科技大学, 2015
|
44 |
Hu F T, Zhao M F, Xing X, et al. Failure analysis of 3Cr P110 repaired tubing in an oilfield [J]. Mater. Prot., 2020, 53(10): 115
|
44 |
胡芳婷, 赵密锋, 邢 星 等. 某油田3Cr P110修复油管断裂原因分析 [J]. 材料保护, 2020, 53(10): 115
|
45 |
Tan C Y, Yin Q S, Yang J, et al. Corrosion mechanism of L80 tubing in a Bohai oilfield [J]. Surf. Technol., 2017, 46(3): 236
|
45 |
谭才渊, 殷启帅, 杨 进 等. 渤海某油田L80油管腐蚀机理研究 [J]. 表面技术, 2017, 46(3): 236
|
46 |
Wang J L, Zang H Y, Zhang Y M, et al. Corrosion failure analysis of oil pipes and couplings [J]. Corros. Prot., 2010, 31: 662
|
46 |
王俊良, 臧晗宇, 张亚明 等. 油管及油管接箍腐蚀失效分析 [J]. 腐蚀与防护, 2010, 31: 662
|
47 |
Zhao C Y, Qi Y M. Fracture failure analysis of P110 tubing coupling for an injection well in an oil field [J]. Pet. Tubular Goods Instrum., 2022, 8(3): 46
|
47 |
赵存耀, 齐亚猛. 某油田注水井P110钢级油管接箍开裂失效分析 [J]. 石油管材与仪器, 2022, 8(3): 46
|
48 |
Wang F, Wei C Y, Huang T J, et al. Effect of H2S partial pressure on stress corrosion cracking behavior of 13Cr stainless steel in annulus environment around CO2 injection well [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 46
|
48 |
王 峰, 韦春艳, 黄天杰 等. H2S分压对13Cr不锈钢在CO2注气井环空环境中应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2014, 34: 46
|
49 |
Tsay L W, Lee W C, Shiue R K, et al. Notch tensile properties of laser-surface-annealed 17-4 PH stainless steel in hydrogen-related environments [J]. Corros. Sci., 2002, 44: 2101
doi: 10.1016/S0010-938X(02)00023-9
|
50 |
Tsay L W, Lin W L. Hydrogen sulphide stress corrosion cracking of weld overlays for desulfurization reactors [J]. Corros. Sci., 1998, 40: 577
doi: 10.1016/S0010-938X(97)00161-3
|
51 |
Chen S H, Yeh R T, Cheng T P, et al. Hydrogen sulphide stress corrosion cracking of TIG and laser welded 304 stainless steel [J]. Corros. Sci., 1994, 36: 2029
doi: 10.1016/0010-938X(94)90006-X
|
52 |
Kane R D, Joia C J B M, Small A L L T, et al. Rapid screening of stainless steels for environmental cracking [J]. Mater. Perform., 1997, 36(9): 71
|
53 |
Ding Y, Cheng C H, Case R. Electrochemical and morphological investigation of corrosion behavior of C1018 in a subcritical and supercritical CO2 environment with presence of H2 S [A]. AMPP Annual Conference + Expo [C]. San Antonio, 2022
|
54 |
Zhou C S, Zheng S Q, Chen C F, et al. The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon pipeline steel [J]. Corros. Sci., 2013, 67: 184
doi: 10.1016/j.corsci.2012.10.016
|
55 |
Li K Y, Zeng Y M, Luo J L. Influence of H2S on the general corrosion and sulfide stress cracking of pipelines steels for supercritical CO2 transportation [J]. Corros. Sci., 2021, 190: 109639
doi: 10.1016/j.corsci.2021.109639
|
56 |
Zhang Y M, Zang H Y, Dong A H, et al. Corrosion failure analysis of 13Cr steel oil pipe [J]. Corros. Sci. Prot. Technol., 2009, 21: 499
|
56 |
张亚明, 臧晗宇, 董爱华 等. 13Cr钢油管腐蚀原因分析 [J]. 腐蚀科学与防护技术, 2009, 21: 499
|
57 |
Cai R, Zhao J L, Wu P, et al. Cause analysis on corrosion of an L80 tube threaded joint [J]. Phys. Test. Chem. Anal., 2019, 55A: 278
|
57 |
蔡 锐, 赵金龙, 吴鹏 等. L80油管螺纹接头腐蚀原因分析 [J]. 理化检验-物理分册, 2019, 55: 278
|
58 |
Zhang Y, Yang K, Yu L S, et al. Research progress on thread corrosion and protection of oil well pipe joint [J]. Sci. Technol. Eng., 2022, 22: 2563
|
58 |
张 颖, 杨 坤, 余柳丝 等. 油井管接头螺纹腐蚀与防护研究进展 [J]. 科学技术与工程, 2022, 22: 2563
|
59 |
Betts A J, Boulton L H. Crevice corrosion: review of mechanisms, modelling, and mitigation [J]. Br. Corros. J., 1993, 28: 279
doi: 10.1179/000705993799156299
|
60 |
Pickering H W. The significance of the local electrode potential within pits, crevices and cracks [J]. Corros. Sci., 1989, 29: 325
doi: 10.1016/0010-938X(89)90039-5
|
61 |
Stockert L, Böhni H. Susceptibility to crevice corrosion and metastable pitting of stainless steels [J]. Mater. Sci. Forum, 1991, 44-45: 313
doi: 10.4028/www.scientific.net/MSF.44-45
|
62 |
Li Y Z, Wang X, Zhang G A. Corrosion behaviour of 13Cr stainless steel under stress and crevice in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2020, 163: 108290
doi: 10.1016/j.corsci.2019.108290
|
63 |
Zhu G Y, Li Y Y, Hou B S, et al. Corrosion behavior of 13Cr stainless steel under stress and crevice in high pressure CO2/O2 environment [J]. J. Mater. Sci. Technol., 2021, 88: 79
doi: 10.1016/j.jmst.2021.02.018
|
64 |
Zhu L Y, Cui Z Y, Cui H Z, et al. The effect of applied stress on the crevice corrosion of 304 stainless steel in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2022, 196: 110039
doi: 10.1016/j.corsci.2021.110039
|
65 |
Kim S H, Lee J H, Kim J G, et al. Effect of the crevice former on the corrosion behavior of 316L stainless steel in chloride-containing synthetic tap water [J]. Met. Mater. Int., 2018, 24: 516
doi: 10.1007/s12540-018-0062-2
|
66 |
Carroll S, Carey J W, Dzombak D, et al. Review: role of chemistry, mechanics, and transport on well integrity in CO2 storage environments [J]. Int. J. Greenhouse Gas Control, 2016, 49: 149
doi: 10.1016/j.ijggc.2016.01.010
|
67 |
Song Y Q, Du C W, Zhang X, et al. Influence of Cl- concentration on crevice corrosion of X70 pipeline steel [J]. Acta Metall. Sin., 2009, 45: 1130
|
67 |
宋义全, 杜翠薇, 张 新 等. Cl-浓度对X70管线钢缝隙腐蚀的影响 [J]. 金属学报, 2009, 45: 1130
|
68 |
Mu J, Li Y Z, Wang X. Crevice corrosion behavior of X70 steel in NaCl solution with different pH [J]. Corros. Sci., 2021, 182: 109310
doi: 10.1016/j.corsci.2021.109310
|
69 |
Hu Q. Study on the electrochemical noise characteristics and the mechanism of crevice corrosion [D]. Wuhan: Huazhong University of Science and Technology, 2011
|
69 |
胡 骞. 缝隙腐蚀的电化学噪声特征及机理研究 [D]. 武汉: 华中科技大学, 2011
|
70 |
Zhong X K, Zheng Z Q, Mo L, et al. Crevice corrosion at screwed joint with tensile stress [J]. Equip. Environ. Eng., 2020, 17(11): 52
|
70 |
钟显康, 郑子奇, 莫 林 等. 螺纹接头处拉应力作用下的缝隙腐蚀行为 [J]. 装备环境工程, 2020, 17(11): 52
|
71 |
De Waard C, Milliams D E. Carbonic acid corrosion of steel [J]. Corrosion, 1975, 31: 177
doi: 10.5006/0010-9312-31.5.177
|
72 |
Waard C D, Lotz U, Milliams D. Predictive model for CO2 corrosion engineering in wet natural gas pipelines [J]. Corrosion, 1991, 47: 976
|
73 |
Xiao G Q, Tan S Z, Yu Z M, et al. CO2 corrosion behaviors of 13Cr steel in the high-temperature steam environment [J]. Petroleum, 2020, 6: 106
doi: 10.1016/j.petlm.2019.12.001
|
74 |
Hu W C. Corrosion mechanism and anti-corrosion measures of CO2 on gas well tubing [J]. Prod. Trial Technol., 1997, 18(2): 67
|
74 |
胡文才. CO2对气井油管腐蚀机理及防腐措施 [J]. 试采技术, 1997, 18(2): 67
|
75 |
Yin Z F, Feng Y R, Zhao W Z, et al. Effect of temperature on CO2 corrosion of carbon steel [J]. Surf. Interface Anal., 2009, 41: 517
doi: 10.1002/sia.v41:6
|
76 |
Moreira R M, Franco C V, Joia C J B M, et al. The effects of temperature and hydrodynamics on the CO2 corrosion of 13Cr and 13Cr5Ni2Mo stainless steels in the presence of free acetic acid [J]. Corros. Sci., 2004, 46: 2987
doi: 10.1016/j.corsci.2004.05.020
|
77 |
Nazari M H, Allahkaram S R, Kermani M B. The effects of temperature and pH on the characteristics of corrosion product in CO2 corrosion of grade X70 steel [J]. Mater. Des., 2010, 31: 3559
|
78 |
Li D P, Han D D, Zhang L, et al. Effects of temperature on CO2 corrosion of tubing and casing steel [A]. Corrosion 2013 [C]. Orlando, 2013
|
79 |
Zhang Y C, Qu S P, Pang X L, et al. Review on corrosion behaviors of steels under supercritical CO2 condition [J]. Corros. Prot., 2011, 32: 854
|
79 |
张玉成, 屈少鹏, 庞晓露 等. 超临界CO2条件下钢的腐蚀行为研究进展 [J]. 腐蚀与防护, 2011, 32: 854
|
80 |
Maldal T, Tappel I M. CO2 underground storage for Snøhvit gas field development [J]. Energy, 2004, 29: 1403
doi: 10.1016/j.energy.2004.03.074
|
81 |
Xiang Y, Wang Z, Yang X X, et al. The upper limit of moisture content for supercritical CO2 pipeline transport [J]. J. Supercrit. Fluids, 2012, 67: 14
doi: 10.1016/j.supflu.2012.03.006
|
82 |
Sun C, Sun J B, Liu S B, et al. Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2-H2O-O2-H2S-SO2 environment as relevant to CCS application [J]. Corros. Sci., 2018, 137: 151
|
83 |
Dugstad A, Morland B, Clausen S. Corrosion of transport pipelines for CO2–effect of water ingress [J]. Energy Procedia, 2011, 4: 3063
doi: 10.1016/j.egypro.2011.02.218
|
84 |
Cabrini M, Lorenzi S, Pastore T, et al. Corrosion rate of high CO2 pressure pipeline steel for carbon capture transport and storage [J]. La Metall. Ital., 2014, 106: 21
|
85 |
Zhang Y C, Pang X L, Qu S P, et al. Discussion of the CO2 corrosion mechanism between low partial pressure and supercritical condition [J]. Corros. Sci., 2012, 59: 186
doi: 10.1016/j.corsci.2012.03.006
|
86 |
Ming N X, Wang Q S, He C, et al. Effect of temperature on corrosion behavior of X70 steel in an artificial CO2-containing formation water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 233
|
86 |
明男希, 王岐山, 何 川 等. 温度对X70钢在含CO2地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2021, 41: 233
doi: 10.11902/1005.4537.2020.049
|
87 |
Xiang Y, Wang Z, Li Z, et al. Effect of temperature on corrosion behaviour of X70 steel in high pressure CO2/SO2/O2/H2O environments [J]. Corros. Eng. Sci. Technol., 2013, 48: 121
doi: 10.1179/1743278212Y.0000000050
|
88 |
Choi Y S, Nešić S. Determining the corrosive potential of CO2 transport pipeline in high pCO2-water environments [J]. Int. J. Greenhouse Gas Control, 2011, 5: 788
|
89 |
Xu M H, Li W H, Zhou Y, et al. Effect of pressure on corrosion behavior of X60, X65, X70, and X80 carbon steels in water-unsaturated supercritical CO2 environments [J]. Int. J. Greenhouse Gas Control, 2016, 51: 357
|
90 |
Zhu Y J, Liu C Y, Wang F, et al. Corrosion behavior of tubing steel 13Cr in a simulated oilfield liquid with saturated carbon dioxide [J]. Corros. Sci. Prot. Technol., 2011, 23: 271
|
90 |
祝英剑, 刘长宇, 王峰 等. 油管钢在饱和CO2模拟油田液中的腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2011, 23: 271
|
91 |
Sun C, Wang Y, Sun J B, et al. Effect of impurity on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]. J. Supercrit. Fluids, 2016, 116: 70
doi: 10.1016/j.supflu.2016.05.006
|
92 |
Choi Y S, Nesic S, Young D. Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments [J]. Environ. Sci. Technol., 2010, 44: 9233
doi: 10.1021/es102578c
|
93 |
Li Y Y, Jiang Z N, Zhang Q H, et al. Unveiling the influential mechanism of O2 on the corrosion of N80 carbon steel under dynamic supercritical CO2 conditions [J]. Corros. Sci., 2022, 205: 110436
doi: 10.1016/j.corsci.2022.110436
|
94 |
Sun J B, Sun C, Wang Y. Effects of O2 and SO2 on water chemistry characteristics and corrosion behavior of X70 pipeline steel in supercritical CO2 transport system [J]. Ind. Eng. Chem. Res., 2018, 57: 2365
doi: 10.1021/acs.iecr.7b04870
|
95 |
Xiang Y, Wang Z, Xu C, et al. Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2 [J]. J. Supercrit. Fluids, 2011, 58: 286
|
96 |
Farelas F, Choi Y S, Nesic S. Effects of CO2 phase change, SO2 content and flow on the corrosion of CO2 transmission pipeline steel [A]. Corrosion 2012 [C]. Salt Lake City, 2012
|
97 |
Li C, Xiang Y, Li W G. Initial corrosion mechanism for API 5L X80 steel in CO2/SO2-saturated aqueous solution within a CCUS system: inhibition effect of SO2 impurity [J]. Electrochim. Acta, 2019, 321: 134663
doi: 10.1016/j.electacta.2019.134663
|
98 |
Xiang Y, Li C, Long Z W, et al. Electrochemical behavior of valve steel in a CO2/sulfurous acid solution [J]. Electrochim. Acta, 2017, 258: 909
doi: 10.1016/j.electacta.2017.11.141
|
99 |
Ayello F, Evans K, Thodla R, et al. Effect of impurities on corrosion of steel in supercritical CO2 [A]. Corrosion 2010 [C]. San Antonio, 2010
|
100 |
Xiang Y, Song C C, Li C, et al. Characterization of 13Cr steel corrosion in simulated EOR-CCUS environment with flue gas impurities [J]. Process Saf. Environ. Prot., 2020, 140: 124
doi: 10.1016/j.psep.2020.04.051
|
101 |
Dugstad A, Halseid M, Morland B. Experimental techniques used for corrosion testing in dense phase CO2 with flue gas impurities [A]. Corrosion 2014 [C]. San Antonio, 2014
|
102 |
Xiang Y, Wang Z, Li Z, et al. Long term corrosion of X70 steel and iron in humid supercritical CO2 with SO2 and O2 impurities [J]. Corros. Eng. Sci. Technol., 2013, 48: 395
doi: 10.1179/1743278213Y.0000000099
|
103 |
Gong Q J, Xiang Y, Zhang J Q, et al. Influence of elemental sulfur on the corrosion mechanism of X80 steel in supercritical CO2-saturated aqueous phase environment [J]. J. Supercrit. Fluids, 2021, 176: 105320
doi: 10.1016/j.supflu.2021.105320
|
104 |
Barker R, Hua Y, Neville A. Internal corrosion of carbon steel pipelines for dense-phase CO2 transport in carbon capture and storage (CCS)-a review [J]. Int. Mater. Rev., 2017, 62: 1
doi: 10.1080/09506608.2016.1176306
|
105 |
Xiang Y, Xie W M, Ni S Y, et al. Comparative study of A106 steel corrosion in fresh and dirty MEA solutions during the CO2 capture process: effect of NO 3 - [J]. Corros. Sci., 2020, 167: 108521
doi: 10.1016/j.corsci.2020.108521
|
106 |
Xiang Y, Yan M C, Choi Y S, et al. Time-dependent electrochemical behavior of carbon steel in MEA-based CO2 capture process [J]. Int. J. Greenhouse Gas Control, 2014, 30: 125
doi: 10.1016/j.ijggc.2014.09.003
|
107 |
Li J K, Sun C, Roostaei M, et al. Role of Ca2+ in the CO2 corrosion behavior and film characteristics of N80 steel and electroless Ni-P coating at high temperature and high pressure [J]. Mater. Chem. Phys., 2021, 267: 124618
doi: 10.1016/j.matchemphys.2021.124618
|
108 |
Bacca K R G, Lopes N F, Dos Santos Batista G, et al. Electrochemical, mechanical, and tribological properties of corrosion product scales formed on X65 steel under CO2 supercritical pressure environments [J]. Surf. Coat. Technol., 2022, 446: 128789
doi: 10.1016/j.surfcoat.2022.128789
|
109 |
Xu D K, Gu T Y. Bioenergetics explains when and why more severe MIC pitting by SRB can occur [A]. Corrosion 2011 [C]. Houston, 2011
|
110 |
Song X Q, Yang Y X, Yu D L, et al. Studies on the impact of fluid flow on the microbial corrosion behavior of product oil pipelines [J]. J. Pet. Sci. Eng., 2016, 146: 803
|
111 |
Zhang D P, Ma F, Wu Y L, et al. Optimization of injection technique of corrosion inhibitor in CO2-flooding oil recovery [J]. J. Southwest Pet. Univ. (Sci. Technol. Ed.), 2020, 42(2): 103
|
111 |
张德平, 马锋, 吴雨乐 等. 用于CO2注气驱的油井缓蚀剂加注工艺优化研究 [J]. 西南石油大学学报(自然科学版), 2020, 42(2): 103
|
112 |
Wang Q Y, Wu W, Li Q, et al. Under-deposit corrosion of tubing served for injection and production wells of CO2 flooding [J]. Eng. Fail. Anal., 2021, 127: 105540
|
113 |
Wang X T, Chen X, Han Z Z, et al. Stress corrosion cracking behavior of 2205 duplex stainless steel in 3.5%NaCl solution with sulfate reducing bacteria [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 43
|
113 |
王欣彤, 陈 旭, 韩镇泽 等. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 43
doi: 10.11902/1005.4537.2019.268
|
114 |
Zhang T S, Wang J L, Li G F, et al. Crevice corrosion of X80 carbon steel induced by sulfate reducing bacteria in simulated seawater [J]. Bioelectrochemistry, 2021, 142: 107933
doi: 10.1016/j.bioelechem.2021.107933
|
115 |
Liu H W, Zhong X K, Liu H F, et al. Microbiologically-enhanced galvanic corrosion of the steel beneath a deposit in simulated oilfield-produced water containing Desulfotomaculum nigrificans [J]. Electrochem. Commun., 2018, 90: 1
doi: 10.1016/j.elecom.2018.03.001
|
116 |
Wu C, Wang Z P, Zhang Z, et al. Influence of crevice width on sulfate-reducing bacteria (SRB)-induced corrosion of stainless steel 316L [J]. Corros. Commun., 2021, 4: 33
doi: 10.1016/j.corcom.2021.12.001
|
117 |
Ma G, Gu Y H, Zhao J. Research progress on sulfate-reducing bacteria induced corrosion of steels [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 289
|
117 |
马 刚, 顾艳红, 赵 杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 289
|
118 |
Li X L, Chen B L, Zhang L, et al. Program optimization for corrosion of oil and gas wells of CO2 flooding in oilfield [J]. Sci. Technol. West China, 2013, 12(5): 2
|
118 |
李向良, 陈百炼, 张 亮 等. 油田CO2驱油气井防腐工艺优化 [J]. 中国西部科技, 2013, 12(5): 2
|
119 |
Zhong W H. Research and application of wellbore corrosion prevention technology in CO2 compound steam flooding [J]. Liaoning Chem. Ind., 2022, 51: 515
|
119 |
钟文浩. CO2复合蒸汽驱井筒腐蚀防治技术研究与应用 [J]. 辽宁化工, 2022, 51: 515
|
120 |
Bai Y L, Shen G L, Qin Q Y, et al. Effect of thiourea imidazoline quaternary ammonium salt corrosion inhibitor on corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 60
|
120 |
白云龙, 沈国良, 覃清钰 等. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 60
doi: 10.11902/1005.4537.2020.015
|
121 |
Zhang K, Sun Y, Wang C J, et al. Research on CO2 corrosion and protection in carbon capture, utilization and storage [J]. Surf. Technol., 2022, 51(9): 43
|
121 |
张 昆, 孙 悦, 王池嘉 等. 碳捕集、利用与封存中CO2腐蚀与防护研究 [J]. 表面技术, 2022, 51(9): 43
|
122 |
He Y J, Zhang T S, Wang H T, et al. Research progress of biocides for microbiologically influenced corrosion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 748
|
122 |
何勇君, 张天遂, 王海涛 等. 微生物腐蚀杀菌剂研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 748
doi: 10.11902/1005.4537.2020.167
|
123 |
Sun C, Liu S B, Li J K, et al. Insights into the interfacial process in electroless Ni-P coating on supercritical CO2 transport pipeline as relevant to carbon capture and storage [J]. ACS Appl. Mater. Interfaces, 2019, 11: 16243
|
124 |
Luo H X, Wang C J, Liu S Y, et al. A novel self-cleaning functional composite coating with extraordinary anti-corrosion performance in high pressure CO2 conditions [J]. Compos. Sci. Technol., 2022, 228: 109638
doi: 10.1016/j.compscitech.2022.109638
|
125 |
Wang X, Ma F M, Chen Y X, et al. CO2 corrosion mechanisms and protection measurements in CO2 EOR [J]. Drill. Prod. Technol., 2006, 29(6): 73
|
125 |
王 霞, 马发明, 陈玉祥 等. 注CO2提高采收率工程中的腐蚀机理及防护措施 [J]. 钻采工艺, 2006, 29(6): 73
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|