Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 1041-1048     CSTR: 32134.14.1005.4537.2022.372      DOI: 10.11902/1005.4537.2022.372
  研究报告 本期目录 | 过刊浏览 |
水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响
何静1(), 于航2, 傅梓瑛1, 岳鹏辉3
1.东北大学基建管理处 沈阳 110819
2.哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001
3.东北大学材料科学与工程学院 沈阳 110819
Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction
HE Jing1(), YU Hang2, FU Ziying1, YUE Penghui3
1.Infrastructure Management Office, Northeastern University, Shenyang 110819, China
2.School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
3.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
全文: PDF(10502 KB)   HTML
摘要: 

采用失重实验、动电位极化曲线、电化学阻抗谱、丝束电极 (WBE) 测试技术研究了水溶性缓蚀剂对建筑管道Q235钢腐蚀行为的影响。结果表明,水溶性缓蚀剂能够有效地缓解沉积物下Q235钢的腐蚀行为,随着缓蚀剂浓度提高,缓蚀剂成膜完整,基体耐腐蚀性能逐渐增强,在添加25 mg/L水溶性缓蚀剂时缓蚀率最大,Q235钢的自腐蚀电流下降了两个数量级。并且水溶性缓蚀剂还能降低沉积物覆盖区域的电偶电流。因此,定期对建筑管道中加注25 mg/L的水溶性缓蚀剂可以有效抑制Q235钢的腐蚀,即使在沉积物覆盖条件下也起到了很好的效果,能够显著提高建筑管道的质量和延长建筑使用寿命。

关键词 水溶性缓蚀剂建筑管道Q235钢腐蚀行为    
Abstract

The effect of water-soluble corrosion inhibitor on the corrosion behavior of pipeline Q235 steel beneath artificial sediments in a liquid of simulated building pipeline sewage was assessed by means of mass-loss measurement, potentiodynamic polarization curve measurement, electrochemical impedance spectroscopy and wire beam electrode (WBE) technique. The results show that the water-soluble corrosion inhibitor IMC-80-N-4 can effectively alleviate the corrosion of Q235 steel in the test environment. With the increasing concentration of the corrosion inhibitor, the inhibitor film formed and became compact gradually on the steel surface. The corrosion inhibition effect of 25 mg/L water-soluble corrosion inhibitor is the best, which reduces the free-corrosion current density of the steel substrate by two orders of magnitude. Moreover, the galvanic current in the area covered with sediments was also reduced. Therefore, regular injection of 25 mg/L water-soluble corrosion inhibitor in the construction pipeline can effectively inhibit the corrosion of Q235 steel, besides, the inhibitor exhibits a good effect even under the condition of sediment coverage. That can significantly improve the safe operation of the construction pipeline, so that increase and extend the service life of the building.

Key wordswater soluble corrosion inhibitor    construction pipeline    Q235 steel    corrosion behavior
收稿日期: 2022-11-28      32134.14.1005.4537.2022.372
ZTFLH:  TG172  
基金资助:兴辽英才计划(XLYC2002071);环境友好材料应用教育部重点实验室项目 (吉林师范大学)(2020011)
通讯作者: 何静,E-mail: 470010175@qq.com,研究方向为工程管理、建筑材料腐蚀防护研究   
Corresponding author: HE Jing, E-mail: 470010175@qq.com   
作者简介: 何静,女,1982年生,硕士

引用本文:

何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1041-1048.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.372      或      https://www.jcscp.org/CN/Y2023/V43/I5/1041

图1  不同浓度水溶性缓蚀剂条件下沉积物覆盖Q235钢的动电位极化曲线
Concentrationmg·L-1Ecorr / mVIcorrμA·cm-2η / %
0-47621.6-
8-41212.044.44
15-4340.26698.77
25-4730.10999.49
表1  不同浓度水溶性缓蚀剂条件下样品的自腐蚀电位、自腐蚀电流以及缓蚀效率
图2  不同浓度水溶性缓蚀剂条件下,沉积物覆盖的Q235钢随时间变化的电化学阻抗谱
图3  用于拟合图2中电化学阻抗谱的等效电路
图4  添加不同浓度缓蚀剂后,沉积物覆盖Q235钢在浸泡6 d内的腐蚀产物电阻和电荷转移电阻
图5  未添加缓蚀剂时,沉积物覆盖下Q235钢的电位与电流分布
图6  添加8 mg/L缓蚀剂时,沉积物覆盖下Q235钢的电位与电流分布
图7  添加15 mg/L缓蚀剂时,沉积物覆盖下Q235钢的电位与电流分布
图8  添加25 mg/L缓蚀剂时,沉积物覆盖下Q235钢的电位与电流分布
图9  浸泡168 h后沉积物覆盖下Q235钢的宏观腐蚀形貌
图10  浸泡168 h后沉积物覆盖下Q235钢的显微腐蚀形貌
1 Ke W. Progress in public inquiry concerning corrosion in Chinese industrial and natural environments [J]. Corros. Prot., 2004, 25(1): 1
1 柯 伟. 中国工业与自然环境腐蚀调查的进展 [J]. 腐蚀与防护, 2004, 25(1): 1
2 Yan Z X, Wang L D, Zhang P J, et al. Failure analysis of Erosion-Corrosion of the bend pipe at sewage stripping units [J]. Eng. Failure Anal., 2021, 129: 105675
doi: 10.1016/j.engfailanal.2021.105675
3 Foorginezhad S, Mohseni-Dargah M, Firoozirad K, et al. Recent advances in sensing and assessment of corrosion in sewage pipelines [J]. Process Saf. Environ. Protect., 2021, 147: 192
doi: 10.1016/j.psep.2020.09.009
4 Montes J C, Hamdani F, Creus J, et al. Impact of chlorinated disinfection on copper corrosion in hot water systems [J]. Appl. Surf. Sci., 2014, 314: 686
doi: 10.1016/j.apsusc.2014.07.069
5 Salama M M. Influence of sand production on design and operations of piping systems [A]. Corrosion 2000 [C]. Orlando, 2000
6 Smith J P, Gilbert I, Kidder R. Inhibition of CO2 corrosion in multiphase flow and solids production: A case history [A]. Corrosion 2001 [C]. Houston, 2001
7 Yin Y K, He L M, Zheng Y F, et al. Under deposit corrosion behavior of pipeline steel in oxygenated medium [J]. Corros. Prot., 2022, 43(9): 35
7 尹彦坤, 贺丽敏, 郑宇峰 等. 含氧介质中管线钢在沉积物下的腐蚀行为 [J]. 腐蚀与防护, 2022, 43(9): 35
8 Tu J G, Wang X, Zhang L, et al. Reason analysis of leakage in 304 stainless steel water pipe [J]. Heat Treat. Technol. Equip., 2017, 38(1): 52
8 涂建国, 王 鑫, 张 玲 等. 304不锈钢水管泄漏原因分析 [J]. 热处理技术与装备, 2017, 38(1): 52
9 Wang X, Melchers R E. Corrosion of carbon steel in presence of mixed deposits under stagnant seawater conditions [J]. J. Loss Prev. Process Ind., 2017, 45: 29
doi: 10.1016/j.jlp.2016.11.013
10 Jiang J, Xin Z H, Zou S H, et al. Study on the control of iron release in water distribution systems by pH, alkalinity and corrosion inhibitor [J]. Water Wastewater Eng., 2021, 57(S1): 422
10 蒋 境, 辛卓航, 邹苏红 等. pH、碱度和缓蚀剂对抑制给水管网铁释放的效果研究 [J]. 给水排水, 2021, 57(S1): 422
11 Kimbell L K, Wang Y, McNamara P J. The impact of metal pipe materials, corrosion products, and corrosion inhibitors on antibiotic resistance in drinking water distribution systems [J]. Appl. Microbiol. Biotechnol., 2020, 104: 7673
doi: 10.1007/s00253-020-10777-8 pmid: 32734389
12 Zhang J P, Zhang Q Y, Yang H X, et al. Inhibition and electrochemical behaviors of Thiazole derivative in CO2 saturated environment [J]. Mater. Prot., 2004, 37(11): 44
12 张军平, 张秋禹, 颜红侠 等. 饱和CO2环境下噻唑衍生物的缓蚀性能和电化学特征 [J]. 材料保护, 2004, 37(11): 44
13 Volk C, Dundore E, Schiermann J, et al. Practical evaluation of iron corrosion control in a drinking water distribution system [J]. Water Res., 2000, 34: 1967
doi: 10.1016/S0043-1354(99)00342-5
14 Mi Z L, Zhang X J, Wang Y, et al. Control effects of phosphate inhibitors on iron release in drinking water distribution system [J]. China Water Wastewater, 2013, 29(23): 52
14 米子龙, 张晓健, 王 洋 等. 磷酸盐类缓蚀剂对给水管网铁释放的控制作用 [J]. 中国给水排水, 2013, 29(23): 52
15 Pandarinathan V, Lepková K, Bailey S I, et al. Evaluation of corrosion inhibition at sand-deposited carbon steel in CO2-saturated brine [J]. Corros. Sci., 2013, 72: 108
doi: 10.1016/j.corsci.2013.03.013
16 Al-Rawajfeh A E, Al-Shamaileh E M. Inhibition of corrosion in steel water pipes by ammonium pyrrolidine dithiocarbamate (APDTC) [J]. Desalination, 2007, 206: 169
doi: 10.1016/j.desal.2006.02.065
17 Liu Y, Wu Y H, Luo S X. Macrocell corrosion of Q235 steel in polluted soils due to the difference of oxygen concentration [J]. Corros. Prot., 2008, 29(8): 438
17 刘 焱, 伍远辉, 罗宿星. Q235钢在污染土壤中的氧浓差宏电池腐蚀 [J]. 腐蚀与防护, 2008, 29(8): 438
18 Fushimi K, Naganuma A, Azumi K, et al. Current distribution during galvanic corrosion of carbon steel welded with type-309 stainless steel in NaCl solution [J]. Corros. Sci., 2008, 50: 903
doi: 10.1016/j.corsci.2007.10.003
19 Wu G, More K L, Johnston C M, et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt [J]. Science, 2011, 332: 443
doi: 10.1126/science.1200832 pmid: 21512028
20 Tan Y J, Fwu Y, Bhardwaj K. Electrochemical evaluation of under-deposit corrosion and its inhibition using the wire beam electrode method [J]. Corros. Sci., 2011, 53: 1254
doi: 10.1016/j.corsci.2010.12.015
21 Yu H. Effect of deposite to the corrosion behavior of Q235 steel in producted water [D]. Harbin: Harbin Engineering University, 2016
21 于 航. 沉积物对产出水中Q235钢腐蚀行为的影响 [D]. 哈尔滨: 哈尔滨工程大学, 2016
[1] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[2] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[3] 王洪伦, 杨华, 蔡辉, 李博文. Q235钢在海南濒海同区域户外暴晒环境和棚下环境的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[4] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[5] 张全福, 宋蕾, 王建, 郭振宇, 任乃栋, 赵建琪, 武维康, 程伟丽. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[6] 万红霞, 刘重麟, 王子安, 刘茹, 陈长风. P110S油套管在微含硫环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
[7] 张佳欢, 崔中雨, 范林, 孙明先. 热处理工艺对Ti6321合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[8] 赵伊, 曹京宜, 方志刚, 冯亚菲, 韩卓, 孟凡帝, 王昭东, 王福会. A517Gr.Q海工钢在模拟海洋飞溅区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 921-928.
[9] 黄连鹏, 张欣, 熊伊铭, 陶嘉豪, 王泽华, 周泽华. 不同磁场强度下铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[10] 薛芳, 刘两雨, 谭龙. Q235钢在不同浓度碳酸氢钠溶液中的有氧腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[11] 梁志远, 徐一鸣, 王硕, 李玉峰, 赵钦新. 高等级合金CO2环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 613-620.
[12] 杨永, 张庆保, 朱万成, 罗艳龙. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
[13] 张克乾, 张华, 李扬, 洪业, 贺诚. 焦耳陶瓷电熔炉中电极材料腐蚀问题的研究现状[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.
[14] 王晶, 王斯琰, 张崇, 王文涛, 曹星, 樊宁, 徐宏妍. 氮掺杂对碳纳米颗粒缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[15] 张建, 黄金, 许家鹏, 罗国强, 沈强. 金属Mo在500 ℃ LiF-LiCl-LiBr-Li熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.