Please wait a minute...
中国腐蚀与防护学报  2008, Vol. 28 Issue (5): 257-264     
  论文 本期目录 | 过刊浏览 |
合金元素Sb和Mn对Zn腐蚀的影响
李红;张波;王俭秋;韩恩厚;柯伟
中国科学院金属研究所金属腐蚀与防护国家重点实验室
Effect of Sb and Mn alloying additions on the Corrosion Behaviour of Zn
中国科学院金属研究所金属腐蚀与防护国家重点实验室
全文: PDF(1577 KB)  
摘要: 采用动电位极化、线性极化、扫描电镜和XPS分析研究了合金元素Sb(含1.0 mass%)和Mn(含0.5 mass% 和1.0 mass%)分别对工业纯Zn(99.95 mass%)在0.1 mol/L NaCl(pH 6)和0.1 mol/L NaCl + 0.1 mol/L Na2SO4 + 0.01 mol/L NaHCO3(pH 8.4)溶液中腐蚀行为的影响。结果表明,Sb主要以Zn-Sb金属间化合物形式存在于Zn中,而Mn除了形成Zn-Mn金属间化合物外,还有一部分固溶在Zn基体中。在0.1 mol/L NaCl溶液中,富Sb相的电化学活性比Zn低且对阴极氧还原反应没有明显的促进作用。富Mn相对阴极氧还原反应有轻微的促进作用,而固溶在Zn基体中的Mn能适当抑制阴极氧还原反应;添加1% Mn和0.5% Mn均对Zn的阳极溶解没有明显影响。在海洋大气环境的模拟溶液(0.1 mol/L NaCl + 0.1 mol/L Na2SO4 + 0.01 mol/L NaHCO3)中,0.5% Mn能显著提高Zn的耐蚀性能,其主要作用机制是少量的Mn能改变产物膜的致密性并影响离子的传输过程。
关键词 Zn合金元素极化曲线微观结构XPS    
Abstract:The effects of alloying elements Sb(1 %)and Mn(0.5% and 1%)on the corrosion behaviour of Zn have been studied in 0.1 M NaCl and 0.1 M NaCl + 0.1 M Na2SO4 + 0.01 M NaHCO3 solutions by potentiodynamic polarizations, linear polarization, SEM investigations and XPS analysis. The results indicate that Sb presents only in the Sb-rich intermetallic particles. Compared with Zn matrix, the Sb-rich phases had no significant effect on both cathodic and anodic behaviour of Zn. Mn was found in both the Mn-rich intermetallic particles and the Zn matrix. Electrochemical measurements revealed that Mn in solid solution can reduce the oxygen reduction on Zn and had no significant effect on the anodic behaviour of Zn in 0.1M NaCl solution. In the simulated solution of marine environment (0.1 NaCl + 0.1 Na2SO4 + 0.01 M NaHCO3), 0.5%Mn can significantly increase the corrosion resistance of Zn through the mechanism that it can produce a more compact film and influence ion migration through the pores in the film.
Key wordsZn    alloying additions    polarization curve    microstructure    XPS
收稿日期: 2007-09-17     
ZTFLH:  TG174.2+2  
通讯作者: 张波     E-mail: bxz011@imr.ac.cn

引用本文:

李红; 张波; 王俭秋; 韩恩厚; 柯伟 . 合金元素Sb和Mn对Zn腐蚀的影响[J]. 中国腐蚀与防护学报, 2008, 28(5): 257-264 .

链接本文:

https://www.jcscp.org/CN/Y2008/V28/I5/257

[1]Short N R,Abibsi A,Dennis J K.Corrosion resistance of electro-plated zinc alloy coatings[J].Trans.Inst.Met.Finish,1989,67(part 3):73-77
[2]Bohe A E,Vilche J R,Juttner K,et al.An electrochemicalimpedance spectroscopy study of passive zinc and low alloyed zincelectrodes in alkaline and neutral aqueous solutions[J].Corros.Sci.,1991,32(5-6):621-633
[3]Pech-Canul M A,Ramanauskas R,Maldonado L.An electro-chemical investigation of passive layers formed on electrodepositedZn and Zn-alloy coatings in alkaline solutions[J].Electrochim.Ac-ta,1997,42(2):255-260
[4]Ramanauskas R,Quintana P,Maldonado L,et al.Corrosion re-sistance and microstructure of electrodeposited Zn and Zn alloycoatings[J].Surf.Coat.Technol.,1997,92(1-2):16-21
[5]Ramanauskas R.Structural factor in Zn alloy electrodeposit corro-sion[J].Appl.Surf.Sci.,1999,153(1):53-64
[6]Hosking N C,Str m M A,Shipway P H,et al.Corrosion resis-tance of zinc-magnesium coated steel[J].Corros.Sci.,2007,49(9):3669-3695
[7]Zhang X G.Corrosion and Electrochemistry of Zinc[M].New York:Plenum Press,1996
[8]Leidheiser H,Suzuki I.Towards a more corrosion resistant gal-vanised steel[J].Corrosion,1980,36(12):701-702
[9]Zhang B.Development of corrosion resistant galvanising alloys[D].Birmingham:The University of Birmingham,2005
[10]Boshkov N.Galvanic Zn-Mn alloys-electrodeposition,phase com-position,corrosion behaviour and protective ability[J].Surf.Coat.Technol.,2003,172(2-3):217-226
[11]Boshkov N,Petrov K,Kovacheva D,et al.Influence of the al-loying component on the protective ability of some zinc galvaniccoatings[J].Electrochim.Acta,2005,51(1):77-84
[12]Hansen M,Elliott R P,Shunk F A.Constitution of Binary Al-loys[M].New York:McGraw-Hill,1958
[13]Fratesi R,Roventi G,Branca C,et al.Corrosion-resistance ofZn-Co alloy coatings[J].Surf.Coat.Technol.,1994,63(2):97-103
[14]Hosny A Y,El-Rafei M E,Ramadan T A,et al.Corrosion re-sistance of zinc coatings produced from a sulfate bath[J].Met.Finish.,1995,93(11):55-59
[15]Rangel C M,Cruz L F.Zinc dissolution in lisbon tap water[J].Corros.Sci.,1992,33(9):1479-1493
[16]Munz R,Wolf G K,Guzman L,et al.Zinc/manganese multilayercoatings for corrosion protection[J].Thin Solid Films,2004,459(1-2):297-302
[17]Assaf F H,Rehim S S A E,Zaky A M.Pitting corrosion of zincin neutral halide solutions[J].Mater.Chem.Phys.,1999,58:58-63
[18]Ligier V,Wery M,Hihn J Y,et al.Formation of the main at-mospheric zinc end products:NaZn4Cl(OH)6SO4.6H2O,Zn4SO4(OH)6.nH2O and Zn4Cl2(OH)4SO4.5H2O in Cl-,SO42-,HCO3-,H2O2electrolytes[J].Corros.Sci.,1999,41(6):1139-1164.
[19]Stern M,Geary A L.Electrochemical polarization I.A theoreticalanalysis of the shape of polarization curves[J].J.Electrochem.Soc.,1957,104:56-63
[20]Cao C N.Corrosion Electrochemistry[M].Beijing:Chemical In-dustry Press,2004(曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004)
[21]Chen W,Wang J,Wang M.Influence of doping concentration onthe properties of ZnO:Mn thin films by sol-gel method[J].Vacu-um,2007,81:894-898
[22]MacDonald D D,Ismail K M,Sikora E.Characterization of pas-sive state on zinc[J].J.Electrochem.Soc.,1998,145(9):3141-3149;
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[4] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[5] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[6] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[7] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[8] 杨明馨, 高阳, 王辉. 添加Zn2+对ZIRLO合金在模拟压水堆一回路含LiOH和H3BO3水溶液工况下耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 199-204.
[9] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[10] 王帅,刘新宽,刘平,陈小红,李伟,马凤仓,何代华,张珂. Sn、Al对无镍白铜耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 45-50.
[11] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[12] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[13] 于美,魏新帝,范世洋,刘建华,李松梅,钟锦岩. 应力作用下2297铝锂合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[14] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[15] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.