|
|
高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展 |
裴书博1, 万冬阳2, 周萍2, 曹国钦1( ), 胡俊华1 |
1.郑州大学材料科学与工程学院 郑州 450001 2.海军研究院 北京 102442 |
|
Research Progress on Preparation, Microstructure, Oxidation- and Corrosion-resistance of High-entropy Alloy Coatings |
PEI Shubo1, WAN Dongyang2, ZHOU Ping2, CAO Guoqin1( ), HU Junhua1 |
1.School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China 2.Naval Research Institute of PLA, Beijing 102442, China |
引用本文:
裴书博, 万冬阳, 周萍, 曹国钦, 胡俊华. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
Shubo PEI,
Dongyang WAN,
Ping ZHOU,
Guoqin CAO,
Junhua HU.
Research Progress on Preparation, Microstructure, Oxidation- and Corrosion-resistance of High-entropy Alloy Coatings. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 873-878.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2021.249
或
https://www.jcscp.org/CN/Y2022/V42/I5/873
|
1 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
|
2 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.200300567
|
3 |
Guo S, Liu C T. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase [J]. Prog. Nat. Sci. Mater. Int., 2011, 21: 433
doi: 10.1016/S1002-0071(12)60080-X
|
4 |
Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
doi: 10.1016/j.actamat.2013.04.058
|
5 |
Wu K K, Yao H H, Cheng X, et al. Oxidation behavior and chemical evolution of architecturally arranged Zr/Si multilayer at high temperature [J]. Surf. Coat. Technol., 2020, 399: 126205
doi: 10.1016/j.surfcoat.2020.126205
|
6 |
Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of Al x Co1.5CrFeNi1.5Ti y high-entropy alloys [J]. Acta Mater., 2011, 59: 6308
doi: 10.1016/j.actamat.2011.06.041
|
7 |
Qin Q D, Qu J B, Hu Y E, et al. Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi-TiO high-entropy alloy [J]. Int. J. Miner. Metall. Mater., 2018, 25: 1286
|
8 |
Worner H K. The cost of corrosion [J]. Anti-Corros. Methods Mater., 1956, 3: 289
doi: 10.1108/eb019217
|
9 |
Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating [J]. Adv. Eng. Mater., 2004, 6: 74
doi: 10.1002/adem.200300507
|
10 |
Cao G Q, Yang L, Yuan G H, et al. Chemical diversity of iron species and structure evolution during the oxidation of C14 Laves phase Zr(Fe,Nb)2 in subcritical environment [J]. Corros. Sci., 2020, 162: 108218
doi: 10.1016/j.corsci.2019.108218
|
11 |
Wei L, Liu Y, Li Q, et al. Effect of roughness on general corrosion and pitting of (FeCoCrNi)0.89(WC)0.11 high-entropy alloy composite in 3.5wt.%NaCl solution [J]. Corros. Sci., 2019, 146: 44
doi: 10.1016/j.corsci.2018.10.025
|
12 |
Wang Z C, Seyeux A, Zanna S, et al. Chloride-induced alterations of the passive film on 316L stainless steel and blocking effect of pre-passivation [J]. Electrochim. Acta, 2020, 329: 135159
doi: 10.1016/j.electacta.2019.135159
|
13 |
Ren Y Y, Yao H H, Hu J H, et al. Evolution of "spinodal decomposition"-like structures during the oxidation of Zr(Fe,Nb)2 under subcritical environment [J]. Scr. Mater., 2020, 187: 107
doi: 10.1016/j.scriptamat.2020.06.018
|
14 |
Shi Y Z, Yang B, Liaw P K. Corrosion-resistant high-entropy alloys: A review [J]. Metals, 2017, 7: 43
doi: 10.3390/met7020043
|
15 |
Cao G Q, Yun Y F, Xu H J, et al. A mechanism assessment for the anti-corrosion of zirconia coating under the condition of subcritical water corrosion [J]. Corros. Sci., 2019, 152: 54
doi: 10.1016/j.corsci.2019.03.009
|
16 |
Chen L J, Zheng Z, Tan Z, et al. High temperature oxidation behavior of Al0.6CrFeCoNi and Al0.6CrFeCoNiSi0.3 high entropy alloys [J]. J. Alloy. Compd., 2018, 764: 845
doi: 10.1016/j.jallcom.2018.06.036
|
17 |
Li T S, Swanson O J, Frankel G S, et al. Localized corrosion behavior of a single-phase non-equimolar high entropy alloy [J]. Electrochim. Acta, 2019, 306: 71
doi: 10.1016/j.electacta.2019.03.104
|
18 |
Li J C, Huang Y X, Meng X C, et al. A review on high entropy alloys coatings: fabrication processes and property assessment [J]. Adv. Eng. Mater., 2019, 21: 1900343
doi: 10.1002/adem.201900343
|
19 |
Cao G Q, Yun Y F, Yang L, et al. The formation and stacking faults of Fe and Cr containing Laves phase in Zircaloy-4 alloy [J]. Mater. Lett., 2017, 191: 203
doi: 10.1016/j.matlet.2016.12.062
|
20 |
Chi Y M, Gu G C, Yu H J, et al. Laser surface alloying on aluminum and its alloys: A review [J]. Opt. Lasers Eng., 2018, 100: 23
doi: 10.1016/j.optlaseng.2017.07.006
|
21 |
Zhang M N, Zhou X L, Yu X N, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding [J]. Surf. Coat. Technol., 2017, 311: 321
doi: 10.1016/j.surfcoat.2017.01.012
|
22 |
Liu J, Liu H, Chen P J, et al. Microstructural characterization and corrosion behaviour of AlCoCrFeNiTi x high-entropy alloy coatings fabricated by laser cladding [J]. Surf. Coat. Technol., 2019, 361: 63
doi: 10.1016/j.surfcoat.2019.01.044
|
23 |
Qiu X W, Zhang Y P, He L, et al. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy [J]. J. Alloy. Compd., 2013, 549: 195
doi: 10.1016/j.jallcom.2012.09.091
|
24 |
Zhang W, Tang R, Yang Z B, et al. Preparation, structure, and properties of an AlCrMoNbZr high-entropy alloy coating for accident-tolerant fuel cladding [J]. Surf. Coat. Technol., 2018, 347: 13
doi: 10.1016/j.surfcoat.2018.04.037
|
25 |
Karimi M A, Shamanian M, Enayati M H. Microstructural and mechanical properties assessment of transient liquid phase bonding of CoCuFeMnNi high entropy alloy [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 3063
doi: 10.1016/S1003-6326(21)65715-1
|
26 |
Wang H D, Liu J N, Xing Z G, et al. Microstructure and corrosion behaviour of AlCoFeNiTiZr high-entropy alloy films [J]. Surf. Eng., 2020, 36: 78
doi: 10.1080/02670844.2019.1625127
|
27 |
Tsai D C, Chang Z C, Kuo L Y, et al. Oxidation resistance and structural evolution of (TiVCrZrHf)N coatings [J]. Thin Solid Films, 2013, 544: 580
doi: 10.1016/j.tsf.2012.12.064
|
28 |
Ye F X, Jiao Z P, Yan S, et al. Microbeam plasma arc remanufacturing: Effects of Al on microstructure, wear resistance, corrosion resistance and high temperature oxidation resistance of Al x CoCrFe MnNi high-entropy alloy cladding layer [J]. Vacuum, 2020, 174: 109178
doi: 10.1016/j.vacuum.2020.109178
|
29 |
Fanicchia F, Csaki I, Geambazu L E, et al. Effect of microstructural modifications on the corrosion resistance of CoCrFeMo0.85Ni compositionally complex alloy coatings [J]. Coatings, 2019, 9: 695
doi: 10.3390/coatings9110695
|
30 |
Anupam A, Kumar S, Chavan N M, et al. First report on cold-sprayed AlCoCrFeNi high-entropy alloy and its isothermal oxidation [J]. J. Mater. Res., 2019, 34: 796
doi: 10.1557/jmr.2019.38
|
31 |
Aliyu A, Srivastava C. Microstructure-corrosion property correlation in electrodeposited AlCrFeCoNiCu high entropy alloys-graphene oxide composite coatings [J]. Thin Solid Films, 2019, 686: 137434
doi: 10.1016/j.tsf.2019.137434
|
32 |
Aliyu A, Srivastava C. Microstructure and corrosion performance of AlFeCoNiCu high entropy alloy coatings by addition of graphene oxide [J]. Materialia, 2019, 8: 100459
doi: 10.1016/j.mtla.2019.100459
|
33 |
Li Y F, Chen C, Han T F, et al. Microstructures and oxidation behavior of NiCrAlCoY-Al composite coatings on Ti-6Al-4V alloy substrate via high-energy mechanical alloying method [J]. J. Alloy. Compd., 2017, 697: 268
doi: 10.1016/j.jallcom.2016.10.171
|
34 |
Cui Z Q, Qin Z, Dong P, et al. Microstructure and corrosion properties of FeCoNiCrMn high entropy alloy coatings prepared by high speed laser cladding and ultrasonic surface mechanical rolling treatment [J]. Mater. Lett., 2020, 259: 126769
doi: 10.1016/j.matlet.2019.126769
|
35 |
Shang C Y, Axinte E, Sun J, et al. CoCrFeNi(W1- x Mo x ) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering [J]. Mater. Des., 2017, 117: 193
doi: 10.1016/j.matdes.2016.12.076
|
36 |
Huang K J, Lin X, Wang Y Y, et al. Microstructure and corrosion resistance of Cu0·9NiAlCoCrFe high entropy alloy coating on AZ91D magnesium alloys by laser cladding [J]. Mater. Res. Innov., 2014, 18: S2-1008
|
37 |
Shu F Y, Tian Y, Jiang S S, et al. Effect of rare earth oxide CeO2 on microstructure and surface properties of laser cladded CoFeCrNiSiB high-entropy alloy coatings [J]. Mater. Res. Express, 2019, 6: 106517
doi: 10.1088/2053-1591/ab3589
|
38 |
Chen S Y, Cai Z B, Lu Z X, et al. Tribo-corrosion behavior of VAlTiCrCu high-entropy alloy film [J]. Mater. Charact., 2019, 157: 109887
doi: 10.1016/j.matchar.2019.109887
|
39 |
Li X C, Zheng Z Y, Dou D, et al. Microstructure and properties of coating of FeAlCuCrCoMn high entropy alloy deposited by direct current magnetron sputtering [J]. Mater. Res., 2016, 19: 802
doi: 10.1590/1980-5373-MR-2015-0536
|
40 |
Wu S K, Pan Y, Wang N, et al. Azo dye degradation behavior of AlFeMnTiM (M=Cr, Co, Ni) high-entropy alloys [J]. Int. J. Miner. Metall. Mater., 2019, 26: 124
doi: 10.1007/s12613-019-1716-x
|
41 |
Qiu X W. Structure and electrochemical properties of laser cladding Al2CoCrCuFeNiTi x high-entropy alloy coatings [J]. Met. Mater. Int., 2020, 26: 998
doi: 10.1007/s12540-019-00411-2
|
42 |
Ye Q F, Feng K, Li Z G, et al. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating [J]. Appl. Surf. Sci., 2017, 396: 1420
doi: 10.1016/j.apsusc.2016.11.176
|
43 |
Wu C L, Zhang S, Zhang C H, et al. Phase evolution and properties in laser surface alloying of FeCoCrAlCuNi x high-entropy alloy on copper substrate [J]. Surf. Coat. Technol., 2017, 315: 368
doi: 10.1016/j.surfcoat.2017.02.068
|
44 |
Li D L, Zhou F, Yu S H. Microstrucrure and corrosion resistance of FeCrNiMnMo x B0.5 high entropy alloy coating prepared by laser cladding [J]. High Power Laser Part. Beams, 2016, 28: 029001
|
45 |
Shang C Y, Axinte E, Ge W J, et al. High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering [J]. Surf. Interf., 2017, 9: 36
|
46 |
Chang F, Cai B J, Zhang C, et al. Thermal stability and oxidation resistance of FeCr x CoNiB high-entropy alloys coatings by laser cladding [J]. Surf. Coat. Technol., 2019, 359: 132
doi: 10.1016/j.surfcoat.2018.12.072
|
47 |
Cai Y C, Zhu L S, Cui Y, et al. High-temperature oxidation behavior of FeCoCrNiAl x high-entropy alloy coatings [J]. Mater. Res. Express, 2019, 6: 126552
doi: 10.1088/2053-1591/ab562d
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|