Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 873-878    DOI: 10.11902/1005.4537.2021.249
  海洋材料腐蚀与防护专栏 本期目录 | 过刊浏览 |
高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展
裴书博1, 万冬阳2, 周萍2, 曹国钦1(), 胡俊华1
1.郑州大学材料科学与工程学院 郑州 450001
2.海军研究院 北京 102442
Research Progress on Preparation, Microstructure, Oxidation- and Corrosion-resistance of High-entropy Alloy Coatings
PEI Shubo1, WAN Dongyang2, ZHOU Ping2, CAO Guoqin1(), HU Junhua1
1.School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
2.Naval Research Institute of PLA, Beijing 102442, China
全文: PDF(562 KB)   HTML
摘要: 

概述了近年来高熵涂层的主要制备手段,重点介绍了磁控溅射和激光熔覆的制备参数对涂层组织结构以及性能的影响。对合金化过程以及特殊元素的作用进行了讨论,重点针对耐腐蚀以及抗氧化性能。对涂层失效的基本物理和化学机理进行说明,并简要总结了高熵涂层具有优异抗氧化性能的原因,探索其在海洋腐蚀、航空航天等特殊环境下的关键应用,在此基础上对高熵合金的未来研究重点进行了总结。

关键词 高熵涂层磁控溅射激光熔覆抗腐蚀高温氧化    
Abstract

This article summarizes the important preparation methods of high-entropy alloy coating in recent years, focusing on the influence of magnetron sputtering and laser cladding preparation parameters on the structure and performance of coatings. The alloying process and the role of special elements are discussed in detail, especially in terms of the corrosion resistance and oxidation resistance of the acquired high-entropy coatings. The relevant mechanisms of coating failures were interpreted from physical and chemical aspects, and the reasons why high-entropy coating has excellent oxidation resistance were also summarized briefly, furthermore, the key problems that may be faced and still to be solved for the application of this kind of coatings in special working conditions such as marine engineering and aerospace etc. are discussed in detail. On this basis, the future research trend of high entropy alloy coatings is prospected.

Key wordshigh entropy coating    magnetron sputtering    laser cladding    corrosion resistance    high temperature oxidation
收稿日期: 2021-09-22     
ZTFLH:  TG174  
通讯作者: 曹国钦     E-mail: caoguoqin@zzu.edu.cn
Corresponding author: CAO Guoqin     E-mail: caoguoqin@zzu.edu.cn
作者简介: 裴书博,男,1994年生,硕士生

引用本文:

裴书博, 万冬阳, 周萍, 曹国钦, 胡俊华. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
Shubo PEI, Dongyang WAN, Ping ZHOU, Guoqin CAO, Junhua HU. Research Progress on Preparation, Microstructure, Oxidation- and Corrosion-resistance of High-entropy Alloy Coatings. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 873-878.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.249      或      https://www.jcscp.org/CN/Y2022/V42/I5/873

1 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
2 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.200300567
3 Guo S, Liu C T. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase [J]. Prog. Nat. Sci. Mater. Int., 2011, 21: 433
doi: 10.1016/S1002-0071(12)60080-X
4 Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
doi: 10.1016/j.actamat.2013.04.058
5 Wu K K, Yao H H, Cheng X, et al. Oxidation behavior and chemical evolution of architecturally arranged Zr/Si multilayer at high temperature [J]. Surf. Coat. Technol., 2020, 399: 126205
doi: 10.1016/j.surfcoat.2020.126205
6 Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of Al x Co1.5CrFeNi1.5Ti y high-entropy alloys [J]. Acta Mater., 2011, 59: 6308
doi: 10.1016/j.actamat.2011.06.041
7 Qin Q D, Qu J B, Hu Y E, et al. Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi-TiO high-entropy alloy [J]. Int. J. Miner. Metall. Mater., 2018, 25: 1286
8 Worner H K. The cost of corrosion [J]. Anti-Corros. Methods Mater., 1956, 3: 289
doi: 10.1108/eb019217
9 Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating [J]. Adv. Eng. Mater., 2004, 6: 74
doi: 10.1002/adem.200300507
10 Cao G Q, Yang L, Yuan G H, et al. Chemical diversity of iron species and structure evolution during the oxidation of C14 Laves phase Zr(Fe,Nb)2 in subcritical environment [J]. Corros. Sci., 2020, 162: 108218
doi: 10.1016/j.corsci.2019.108218
11 Wei L, Liu Y, Li Q, et al. Effect of roughness on general corrosion and pitting of (FeCoCrNi)0.89(WC)0.11 high-entropy alloy composite in 3.5wt.%NaCl solution [J]. Corros. Sci., 2019, 146: 44
doi: 10.1016/j.corsci.2018.10.025
12 Wang Z C, Seyeux A, Zanna S, et al. Chloride-induced alterations of the passive film on 316L stainless steel and blocking effect of pre-passivation [J]. Electrochim. Acta, 2020, 329: 135159
doi: 10.1016/j.electacta.2019.135159
13 Ren Y Y, Yao H H, Hu J H, et al. Evolution of "spinodal decomposition"-like structures during the oxidation of Zr(Fe,Nb)2 under subcritical environment [J]. Scr. Mater., 2020, 187: 107
doi: 10.1016/j.scriptamat.2020.06.018
14 Shi Y Z, Yang B, Liaw P K. Corrosion-resistant high-entropy alloys: A review [J]. Metals, 2017, 7: 43
doi: 10.3390/met7020043
15 Cao G Q, Yun Y F, Xu H J, et al. A mechanism assessment for the anti-corrosion of zirconia coating under the condition of subcritical water corrosion [J]. Corros. Sci., 2019, 152: 54
doi: 10.1016/j.corsci.2019.03.009
16 Chen L J, Zheng Z, Tan Z, et al. High temperature oxidation behavior of Al0.6CrFeCoNi and Al0.6CrFeCoNiSi0.3 high entropy alloys [J]. J. Alloy. Compd., 2018, 764: 845
doi: 10.1016/j.jallcom.2018.06.036
17 Li T S, Swanson O J, Frankel G S, et al. Localized corrosion behavior of a single-phase non-equimolar high entropy alloy [J]. Electrochim. Acta, 2019, 306: 71
doi: 10.1016/j.electacta.2019.03.104
18 Li J C, Huang Y X, Meng X C, et al. A review on high entropy alloys coatings: fabrication processes and property assessment [J]. Adv. Eng. Mater., 2019, 21: 1900343
doi: 10.1002/adem.201900343
19 Cao G Q, Yun Y F, Yang L, et al. The formation and stacking faults of Fe and Cr containing Laves phase in Zircaloy-4 alloy [J]. Mater. Lett., 2017, 191: 203
doi: 10.1016/j.matlet.2016.12.062
20 Chi Y M, Gu G C, Yu H J, et al. Laser surface alloying on aluminum and its alloys: A review [J]. Opt. Lasers Eng., 2018, 100: 23
doi: 10.1016/j.optlaseng.2017.07.006
21 Zhang M N, Zhou X L, Yu X N, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding [J]. Surf. Coat. Technol., 2017, 311: 321
doi: 10.1016/j.surfcoat.2017.01.012
22 Liu J, Liu H, Chen P J, et al. Microstructural characterization and corrosion behaviour of AlCoCrFeNiTi x high-entropy alloy coatings fabricated by laser cladding [J]. Surf. Coat. Technol., 2019, 361: 63
doi: 10.1016/j.surfcoat.2019.01.044
23 Qiu X W, Zhang Y P, He L, et al. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy [J]. J. Alloy. Compd., 2013, 549: 195
doi: 10.1016/j.jallcom.2012.09.091
24 Zhang W, Tang R, Yang Z B, et al. Preparation, structure, and properties of an AlCrMoNbZr high-entropy alloy coating for accident-tolerant fuel cladding [J]. Surf. Coat. Technol., 2018, 347: 13
doi: 10.1016/j.surfcoat.2018.04.037
25 Karimi M A, Shamanian M, Enayati M H. Microstructural and mechanical properties assessment of transient liquid phase bonding of CoCuFeMnNi high entropy alloy [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 3063
doi: 10.1016/S1003-6326(21)65715-1
26 Wang H D, Liu J N, Xing Z G, et al. Microstructure and corrosion behaviour of AlCoFeNiTiZr high-entropy alloy films [J]. Surf. Eng., 2020, 36: 78
doi: 10.1080/02670844.2019.1625127
27 Tsai D C, Chang Z C, Kuo L Y, et al. Oxidation resistance and structural evolution of (TiVCrZrHf)N coatings [J]. Thin Solid Films, 2013, 544: 580
doi: 10.1016/j.tsf.2012.12.064
28 Ye F X, Jiao Z P, Yan S, et al. Microbeam plasma arc remanufacturing: Effects of Al on microstructure, wear resistance, corrosion resistance and high temperature oxidation resistance of Al x CoCrFe MnNi high-entropy alloy cladding layer [J]. Vacuum, 2020, 174: 109178
doi: 10.1016/j.vacuum.2020.109178
29 Fanicchia F, Csaki I, Geambazu L E, et al. Effect of microstructural modifications on the corrosion resistance of CoCrFeMo0.85Ni compositionally complex alloy coatings [J]. Coatings, 2019, 9: 695
doi: 10.3390/coatings9110695
30 Anupam A, Kumar S, Chavan N M, et al. First report on cold-sprayed AlCoCrFeNi high-entropy alloy and its isothermal oxidation [J]. J. Mater. Res., 2019, 34: 796
doi: 10.1557/jmr.2019.38
31 Aliyu A, Srivastava C. Microstructure-corrosion property correlation in electrodeposited AlCrFeCoNiCu high entropy alloys-graphene oxide composite coatings [J]. Thin Solid Films, 2019, 686: 137434
doi: 10.1016/j.tsf.2019.137434
32 Aliyu A, Srivastava C. Microstructure and corrosion performance of AlFeCoNiCu high entropy alloy coatings by addition of graphene oxide [J]. Materialia, 2019, 8: 100459
doi: 10.1016/j.mtla.2019.100459
33 Li Y F, Chen C, Han T F, et al. Microstructures and oxidation behavior of NiCrAlCoY-Al composite coatings on Ti-6Al-4V alloy substrate via high-energy mechanical alloying method [J]. J. Alloy. Compd., 2017, 697: 268
doi: 10.1016/j.jallcom.2016.10.171
34 Cui Z Q, Qin Z, Dong P, et al. Microstructure and corrosion properties of FeCoNiCrMn high entropy alloy coatings prepared by high speed laser cladding and ultrasonic surface mechanical rolling treatment [J]. Mater. Lett., 2020, 259: 126769
doi: 10.1016/j.matlet.2019.126769
35 Shang C Y, Axinte E, Sun J, et al. CoCrFeNi(W1- x Mo x ) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering [J]. Mater. Des., 2017, 117: 193
doi: 10.1016/j.matdes.2016.12.076
36 Huang K J, Lin X, Wang Y Y, et al. Microstructure and corrosion resistance of Cu0·9NiAlCoCrFe high entropy alloy coating on AZ91D magnesium alloys by laser cladding [J]. Mater. Res. Innov., 2014, 18: S2-1008
37 Shu F Y, Tian Y, Jiang S S, et al. Effect of rare earth oxide CeO2 on microstructure and surface properties of laser cladded CoFeCrNiSiB high-entropy alloy coatings [J]. Mater. Res. Express, 2019, 6: 106517
doi: 10.1088/2053-1591/ab3589
38 Chen S Y, Cai Z B, Lu Z X, et al. Tribo-corrosion behavior of VAlTiCrCu high-entropy alloy film [J]. Mater. Charact., 2019, 157: 109887
doi: 10.1016/j.matchar.2019.109887
39 Li X C, Zheng Z Y, Dou D, et al. Microstructure and properties of coating of FeAlCuCrCoMn high entropy alloy deposited by direct current magnetron sputtering [J]. Mater. Res., 2016, 19: 802
doi: 10.1590/1980-5373-MR-2015-0536
40 Wu S K, Pan Y, Wang N, et al. Azo dye degradation behavior of AlFeMnTiM (M=Cr, Co, Ni) high-entropy alloys [J]. Int. J. Miner. Metall. Mater., 2019, 26: 124
doi: 10.1007/s12613-019-1716-x
41 Qiu X W. Structure and electrochemical properties of laser cladding Al2CoCrCuFeNiTi x high-entropy alloy coatings [J]. Met. Mater. Int., 2020, 26: 998
doi: 10.1007/s12540-019-00411-2
42 Ye Q F, Feng K, Li Z G, et al. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating [J]. Appl. Surf. Sci., 2017, 396: 1420
doi: 10.1016/j.apsusc.2016.11.176
43 Wu C L, Zhang S, Zhang C H, et al. Phase evolution and properties in laser surface alloying of FeCoCrAlCuNi x high-entropy alloy on copper substrate [J]. Surf. Coat. Technol., 2017, 315: 368
doi: 10.1016/j.surfcoat.2017.02.068
44 Li D L, Zhou F, Yu S H. Microstrucrure and corrosion resistance of FeCrNiMnMo x B0.5 high entropy alloy coating prepared by laser cladding [J]. High Power Laser Part. Beams, 2016, 28: 029001
45 Shang C Y, Axinte E, Ge W J, et al. High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering [J]. Surf. Interf., 2017, 9: 36
46 Chang F, Cai B J, Zhang C, et al. Thermal stability and oxidation resistance of FeCr x CoNiB high-entropy alloys coatings by laser cladding [J]. Surf. Coat. Technol., 2019, 359: 132
doi: 10.1016/j.surfcoat.2018.12.072
47 Cai Y C, Zhu L S, Cui Y, et al. High-temperature oxidation behavior of FeCoCrNiAl x high-entropy alloy coatings [J]. Mater. Res. Express, 2019, 6: 126552
doi: 10.1088/2053-1591/ab562d
[1] 解磊鹏, 陈明辉, 王金龙, 王福会. 放电等离子烧结超细晶ODS镍基合金的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
[2] 张勤, 梁涛沙, 王文, 赵朗朗, 姜岳峰. 纳米晶Ni-12Cr合金800 ℃高温氧化动力学和氧化膜结构演化[J]. 中国腐蚀与防护学报, 2022, 42(5): 733-742.
[3] 王明好, 王欢, 刘叡, 孟凡帝, 刘莉, 王福会. 基于深度学习方法的N5/NiCrAlY涂层图像识别的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 583-589.
[4] 邱盼盼, 舒小勇, 胡林丽, 杨韬, 房雨晴. Pt改性镍基高温合金铝化物涂层研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[5] 李玲, 杜汐然, 曲品权, 李建呈, 王金龙, 古岩, 张甲, 陈明辉, 王福会. 真空热处理对多弧离子镀NiCoCrAlY涂层高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[6] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[7] 杨胜, 张慧杰, 向午渊, 欧阳涛, 肖芬, 周慧. 表面处理工艺对TC4钛合金微弧氧化膜层及电偶电流的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[8] 周浩, 王胜利, 刘雪峰, 尤世界. 新型复合缓蚀剂对青铜文物的防腐蚀研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 517-522.
[9] 李瑞涛, 肖博, 刘晓, 朱忠亮, 程义, 李俊菀, 曹杰玉, 丁海民, 张乃强. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
[10] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[11] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[12] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[13] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[14] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[15] 王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.