Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 540-550    DOI: 10.11902/1005.4537.2021.138
  研究报告 本期目录 | 过刊浏览 |
大气污染物硫酸铵和氯化钠混合盐粒沉降对电路板铜大气腐蚀的加速机制
马小泽1, 孟令东2, 曹祥康1, 肖松1, 董泽华1()
1.华中科技大学化学与化工学院 武汉 430074
2.装甲兵学院材料学院 北京 100086
Influence of Co-deposition of Pollutant Particulates Ammonium Sulfate and Sodium Chloride on Atmospheric Corrosion of Copper of Printed Circuit Board
MA Xiaoze1, MENG Lingdong2, CAO Xiangkang1, XIAO Song1, DONG Zehua1()
1.School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2.School of Materials, Academy of Armored Forces, Beijing 100086, China
全文: PDF(8644 KB)   HTML
摘要: 

采用电化学阻抗 (EIS)、石英晶体微天平 (QCM) 和铜箔电阻探针 (TER) 等多种大气腐蚀测量技术,以表面沉积不同比例 (NH4)2SO4和NaCl混合盐粒下的电路板铜箔为样本,在气候试验箱中模拟研究了电路板铜在模拟污染大气环境下的初期大气腐蚀行为。结果表明:在30 ℃ RH90%环境中且表面沉积量相同时,在腐蚀初期 (<30 h),(NH4)2SO4和NaCl混合盐粒对铜的腐蚀性比沉积单一NaCl盐粒的体系更强;但30 h后,情况发生反转,混合盐粒对铜的腐蚀相比单一NaCl盐粒体系反而显著降低,且当混合比例为1∶1时,(NH4)2SO4对NaCl腐蚀的抑制作用最强 (抑制比达84%)。通过腐蚀产物的SEM、XRD、XPS分析可知,在腐蚀前期,由于NH4+对Cu的腐蚀促进作用使铜表面快速形成了较为致密的Cu2O腐蚀产物,从而显著减缓了铜基底腐蚀。尽管沉积NaCl盐粒的铜表面也生成了Cu2O腐蚀产物,但相对比较疏松多孔,反而会因为腐蚀产物的阴极促进作用加速腐蚀产物层下的Cu腐蚀。

关键词 大气腐蚀电路板铜污染物腐蚀监测电阻探针石英晶体微天平    
Abstract

The initial atmospheric corrosion behavior of Cu foils induced by co-depositioned with of particulates with different proportions of (NH4)2SO4 and NaCl particles in a weathering chamber was assessed via electrochemical impedance (EIS), quartz crystal microbalance (QCM) and thin foil electrical resistance probe (TER). The results show that the mixed salt particles of (NH4)2SO4 and NaCl promote the initial atmospheric corrosion of PCB-Cu compared with sole NaCl salt particles in the initial 30 h when the total deposition amount is equal. However, after 30 h, the atmospheric corrosion rate of PCB-Cu beneath the mixed salts is significantly lower than that beneath the sole NaCl particles when the mixing ratio of (NH4)2SO4 to NaCl is 1:1, and the inhibition ratio of Cu corrosion can reach 84%, indicating that the (NH4)2SO4 can refrain the corrosion of PCB-Cu beneath induced by NaCl particles. According to the SEM, XRD and XPS analysis of corrosion products, in the early stage of corrosion, due to the catalytic effect of NH4+ on the corrosion of Cu, dense Cu2O corrosion products quickly formed on the copper surface, which dramatically refrains the corrosion of Cu substrate. Although Cu2O corrosion products are also generated on PCB-Cu surface where NaCl particles are deposited, they are relatively loose and porous, which could accelerate the corrosion of Cu beneath porous Cu2O layer due to the cathodic depolarization of the corrosion product layer.

Key wordsatmospheric corrosion    PCB copper    pollutant    corrosion monitoring    electrical resistance probe    quartz crystal microbalance
收稿日期: 2021-06-15     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51371087)
通讯作者: 董泽华     E-mail: zhdong@hust.edu.cn
Corresponding author: DONG Zehua     E-mail: zhdong@hust.edu.cn
作者简介: 马小泽,男,1996年生,硕士生

引用本文:

马小泽, 孟令东, 曹祥康, 肖松, 董泽华. 大气污染物硫酸铵和氯化钠混合盐粒沉降对电路板铜大气腐蚀的加速机制[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
Xiaoze MA, Lingdong MENG, Xiangkang CAO, Song XIAO, Zehua DONG. Influence of Co-deposition of Pollutant Particulates Ammonium Sulfate and Sodium Chloride on Atmospheric Corrosion of Copper of Printed Circuit Board. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 540-550.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.138      或      https://www.jcscp.org/CN/Y2022/V42/I4/540

图1  沉积不同比例混合盐粒的Cu梳齿电极在30 ℃下RH80%气候箱中暴露72 h后的EIS曲线
图2  对称铜梳齿电极在盐粒下的吸附薄液膜模型及相应的等效电路图
Ratio:NaCl / (NH4)2SO4RTEL / Ω·cm2Rct / Ω·cm2CPEdl / F·cm-2 Hz1-nCPEdl-nW / Ω·cm2
4:03.948111.79×10-80.411.14×104
3:15.259003.72×10-70.542.88×104
2:24795.95×1041.25×10-100.772.75×105
1:394.371.09×1052.83×10-80.732.81×105
0:4402.31.19×1067.74×10-100.921.19×104
表1  沉积不同比例盐粒的梳齿铜电极在30 ℃,RH80%下暴露72 h后的EIS拟合结果
图3  沉积40 µg/cm2 (NH4)2SO4或NaCl盐粒的铜梳齿电极在30 ℃,不同RH条件下暴露2 h后的Bode图
图4  沉积不同比例混合盐粒的铜梳齿电极在30 ℃,RH90%气候箱中暴露72 h后的EIS曲线
Ratio of NaCl / (NH4)2SO4Rs / Ω·cm2Rct / Ω·cm2Cdl / F·cm-2 Hz1-nCdl-nW / Ω·cm2
4:05.66131.001×10-60.405.10×103
3:110.822556.992×10-60.579.95×103
2:244.4532487.882×10-60.481.13×105
1:399.88245.292×10-80.842.96×104
0:4174.36.05×1041.247×10-100.851.52×104
表2  30 ℃,RH90%条件下表面沉积不同比例盐粒72 h时铜梳齿电极的EIS拟合结果
图5  沉积不同比例盐粒下铜梳齿电极在30 ℃,RH90%气候箱中暴露时低频阻抗随时间的变化
图6  沉积不同比例硫酸钠,硫酸铵和NaCl盐粒的铜梳齿电极在30 ℃,RH90%条件下暴露时的|Z|0.01 Hz对比图
图7  沉积不同比例盐粒的QCM镀铜晶片在30 ℃,RH 90%条件下暴露时的增重曲线
图8  在30 ℃和RH90%条件下暴露时Cu箔的厚度损失以及腐蚀速率随时间及盐粒比例的变化曲线
图9  表面沉积不同比例盐粒的铜片在30 ℃,RH90%条件下暴露72 h后的腐蚀产物XRD图
图10  沉积40 µg/cm2 NaCl,NaCl: (NH4)2SO4 (1:1),(NH4)2SO4的Cu在30 ℃和RH90%条件下暴露3 d后表面XPS谱图
图11  未沉积和沉积不同比例盐粒的铜试样在30 ℃和RH90%条件下暴露3 d后的微观腐蚀形貌
1 Gil H, Calderón J A, Buitrago C P, et al. Indoor atmospheric corrosion of electronic materials in tropical-mountain environments [J]. Corros. Sci., 2010, 52: 327
doi: 10.1016/j.corsci.2009.09.019
2 Xiao K, Gao X, Yan L D, et al. Atmospheric corrosion factors of printed circuit boards in a dry-heat desert environment: salty dust and diurnal temperature difference [J]. Chem. Eng. J., 2018, 336: 92
doi: 10.1016/j.cej.2017.11.017
3 Pei Z B, Cheng X Q, Yang X J, et al. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors [J]. J. Mater. Sci. Technol., 2021, 64: 214
doi: 10.1016/j.jmst.2020.01.023
4 Huang H L, Guo X P, Zhang G A, et al. The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layer [J]. Corros. Sci., 2011, 53: 1700
doi: 10.1016/j.corsci.2011.01.031
5 Yan L D, Xiao K, Yi P, et al. The corrosion behavior of PCB-ImAg in industry polluted marine atmosphere environment [J]. Mater. Des., 2017, 115: 404
doi: 10.1016/j.matdes.2016.11.074
6 Ding K K, Li X G, Xiao K, et al. Electrochemical migration behavior and mechanism of PCB-ImAg and PCB-HASL under adsorbed thin liquid films [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 2446
doi: 10.1016/S1003-6326(15)63861-4
7 Xiao K, Dong C F, Li X G, et al. Effect of deposition of NaCl on the initial atmospheric corrosion of Q235 [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 26
7 肖葵, 董超芳, 李晓刚 等. NaCl颗粒沉积对Q235钢早期大气腐蚀的影响 [J]. 中国腐蚀与防护学报, 2006, 26: 26
8 Badilla G L, Samaniego E R, Perea S L T, et al. Characterization of copper sulfides formed in MEMS connections by atmospheric corrosion in indoor of electronics industry of arid and marine environments [J]. IFAC Proceed. Vol., 2013, 46: 24
9 Sonawane P D, Raja V K B, Gupta M. Mechanical properties and corrosion analysis of lead-free Sn-0.7Cu solder CSI joints on Cu substrate [J]. Mater. Today: Proceed., 2021, 46: 1101
10 Perveen K, Bridges G E, Bhadra S, et al. Corrosion potential sensor for remote monitoring of civil structure based on printed circuit board sensor [J]. IEEE Trans. Instrum. Meas., 2014, 63: 2422
11 Minzari D, Jellesen M S, Møller P, et al. On the electrochemical migration mechanism of tin in electronics [J]. Corros. Sci., 2011, 53: 3366
doi: 10.1016/j.corsci.2011.06.015
12 Yu X Y, Wang Z H, Lu Z H. In situ investigation of atmospheric corrosion behavior of copper under thin electrolyte layer and static magnetic field [J]. Microelectron. Reliab., 2020, 108: 113630
doi: 10.1016/j.microrel.2020.113630
13 Yu X Y, Wang Z H, Lu Z H. Atmospheric corrosion behavior of copper under static magnetic field environment [J]. Mater. Lett., 2020, 266: 127472
doi: 10.1016/j.matlet.2020.127472
14 Zhong X K. The corrosion and electrochemical migration of tin under thin electrolyte layers [D]. Wuhan: Huazhong University of Science and Technology, 2014
14 钟显康. 薄液膜下锡的腐蚀和电化学迁移行为及机理 [D]. 武汉: 华中科技大学, 2014
15 Zhong X K, Zhang G A, Qiu Y B, et al. In situ study the dependence of electrochemical migration of tin on chloride [J]. Electrochem. Commun., 2013, 27: 63
doi: 10.1016/j.elecom.2012.11.010
16 Zhang L, Wang Z Y, Zhao C Y, et al. Corrosion behavior of Q235 steel and weathering steel in simulated marine industry atmosphere [J]. Mater. Protect., 2015, 48(2): 19
16 张琳, 王振尧, 赵春英 等. 模拟海洋工业大气环境中Q235钢及耐候钢的腐蚀行为 [J]. 材料保护, 2015, 48(2): 19
17 Guo M X, Pan C, Wang Z Y, et al. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2018, 54: 65
17 郭明晓, 潘晨, 王振尧 等. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究 [J]. 金属学报, 2018, 54: 65
doi: 10.11900/0412.1961.2017.00142
18 Li K. Study on the corrosion mechanism of pure copper in the presence of ammonium sulfate [D]. Beijing: University of Chinese Academy of Sciences, 2018
18 李坤. 硫酸铵对纯铜腐蚀过程影响机理的研究 [D]. 北京: 中国科学院大学, 2018
19 Fan Y M, Liu W, Li S M, et al. Evolution of rust layers on carbon steel and weathering steel in high humidity and heat marine atmospheric corrosion [J]. J. Mater. Sci. Technol., 2020, 39: 190
doi: 10.1016/j.jmst.2019.07.054
20 Wang M N, Qiao C, Jiang X L, et al. Microstructure induced galvanic corrosion evolution of SAC305 solder alloys in simulated marine atmosphere [J]. J. Mater. Sci. Technol., 2020, 51: 40
doi: 10.1016/j.jmst.2020.03.024
21 Hu Y T, Dong P F, Jiang L, et al. Corrosion behavior of riveted joints of TC4 Ti-alloy and 316L stainless steel in simulated marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 167
21 胡玉婷, 董鹏飞, 蒋立 等. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 167
22 Qi D M, Cheng R Y, Du X Q, et al. Review on atmospheric corrosion of copper and copper alloys [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 389
22 齐东梅, 成若义, 杜小青 等. Cu及其合金的大气腐蚀研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 389
23 Liu Y W, Wang Z Y, Cao G W, et al. Study on corrosion behavior of zinc exposed in coastal-industrial atmospheric environment [J]. Mater. Chem. Phys., 2017, 198: 243
doi: 10.1016/j.matchemphys.2017.05.043
24 Pan C, Lv W Y, Wang Z Y, et al. Atmospheric corrosion of copper exposed in a simulated coastal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2017, 33: 587
doi: 10.1016/j.jmst.2016.03.024
25 Hao L, Zhang S X, Dong J H, et al. Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere [J]. Corros. Sci., 2012, 59: 270
doi: 10.1016/j.corsci.2012.03.010
26 Schindelholz E J, Cong H, Jove-Colon C F, et al. Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride [J]. Electrochim. Acta, 2018, 276: 194
doi: 10.1016/j.electacta.2018.04.184
27 Wan S, Ma X Z, Miao C H, et al. Inhibition of 2-phenyl imidazoline on chloride-induced initial atmospheric corrosion of copper by quartz crystal microbalance and electrochemical impedance [J]. Corros. Sci., 2020, 170: 108692
doi: 10.1016/j.corsci.2020.108692
28 Chen Z Y, Zakipour S, Persson D, et al. Effect of sodium chloride particles on the atmospheric corrosion of pure copper [J]. Corrosion, 2004, 60: 479
doi: 10.5006/1.3299244
29 Lobnig R E, Frankenthal R P, Siconolfi D J, et al. The effect of submicron ammonium sulfate particles on the corrosion of copper [J]. J. Electrochem. Soc., 1993, 140: 1902
doi: 10.1149/1.2220736
30 Lobnig R E, Frankenthal R P, Siconolfi D J, et al. Mechanism of atmospheric corrosion of copper in the presence of submicron ammonium sulfate particles at 300 and 373 K [J]. J. Electrochem. Soc., 1994, 141: 2935
doi: 10.1149/1.2059261
31 Wan S, Hou J, Zhang Z F, et al. Monitoring of atmospheric corrosion and dewing process by interlacing copper electrode sensor [J]. Corros. Sci., 2019, 150: 246
doi: 10.1016/j.corsci.2019.02.008
32 Wan S, Dong Z H, Guo X P. Investigation on initial atmospheric corrosion of copper and inhibition performance of 2-phenyl imidazoline based on electrical resistance sensors [J]. Mater. Chem. Phys., 2021, 262: 124321
doi: 10.1016/j.matchemphys.2021.124321
33 Qiao C, Wang M N, Hao L, et al. In-situ EIS study on the initial corrosion evolution behavior of SAC305 solder alloy covered with NaCl solution [J]. J. Alloy. Compd., 2021, 852: 156953
doi: 10.1016/j.jallcom.2020.156953
34 Qu Q, Li L, Bai W, et al. Initial atmospheric corrosion of zinc in presence of Na2SO4 and (NH4)2SO4 [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 887
doi: 10.1016/S1003-6326(06)60345-2
35 Qu Q, Li L, Bai W, et al. Effects of NaCl and NH4Cl on the initial atmospheric corrosion of zinc [J]. Corros. Sci., 2005, 47: 2832
doi: 10.1016/j.corsci.2004.11.010
36 Wadsak M, Schreiner M, Aastrup T, et al. Combined in-situ investigations of atmospheric corrosion of copper with SFM and IRAS coupled with QCM [J]. Surf. Sci., 2000, 454-456: 246
doi: 10.1016/S0039-6028(00)00081-9
37 Wiesinger R, Schreiner M, Kleber C. Investigations of the interactions of CO2, O3 and UV light with silver surfaces by in situ IRRAS/QCM and ex situ TOF-SIMS [J]. Appl. Surf. Sci., 2010, 256: 2735
doi: 10.1016/j.apsusc.2009.11.019
[1] 范益, 杨文秀, 王军, 蔡佳兴, 马宏驰. Q690qE桥梁钢在模拟滨海工业环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
[2] 孙晓光, 王睿, 张志毅, 韩晓辉, 李刚卿. 高速列车动态服役环境腐蚀在线监测技术研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 441-446.
[3] 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[4] 王志高, 海潮, 姜杰, 兰新生, 杜翠薇, 李晓刚. Q235钢在德阳大气环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[5] 夏晓健, 蔡建宾, 林德源, 万芯瑗, 李扬森, 张标华, 陈云翔, 韩纪层, 邹智敏, 姜春海. 沿海变电站设备腐蚀状况及其腐蚀机理与防护[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[6] 王军, 陈军君, 谢亿, 徐松, 刘兰兰, 吴堂清, 尹付成. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[7] 陈文娟, 方莲, 潘刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[8] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[9] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[10] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[11] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[12] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[13] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[14] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[15] 张新新,高志明,胡文彬,伍志鹏,韩连恒,卢丽花,修妍,夏大海. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.