Please wait a minute...
中国腐蚀与防护学报  2007, Vol. 27 Issue (1): 27-30     
  研究报告 本期目录 | 过刊浏览 |
表面活性剂对镍-磷-纳米氧化铝复合镀的影响
周琦; 邵忠宝;贺春林;邵忠财;才庆魁; 高维娜
沈阳理工大学
IMPACT OF SURFACTANTS ON ELECTROLESS DEPOSITIONNi-P-Nano-Al2O3 COMPOSITE COATING
;;;;;
沈阳理工大学
全文: PDF(799 KB)  
摘要: 研究了阴离子型表面活性剂(十二烷基苯磺酸钠、十二烷基硫酸钠)和阳离子型表面活性剂(三乙醇胺)对镍-磷-纳米氧化铝复合镀性能的影响.讨论了表面活性剂的种类、加入量对沉积速度、镀层的硬度和耐磨性能的影响.通过扫描电镜(SEM)观察各种复合镀层形貌,利用能谱仪(EDS)测量镀层中纳米Al2O3粒子的复合量.结果表明:纳米复合化学镀液中两种阴离子型表面活性剂的较佳加入量均为50 mg/L,阳离子型表面活性剂较佳加入量为100mg/L;采用阳离子表面活性剂时所得镀层的纳米粒子复合量较大,镀速快,耐磨性能好且纳米氧化铝分散较均匀;相比化学镀Ni-P和微米Al2O3复合化学镀Ni-P工艺所得镀层,纳米复合镀层具有较高的硬度和较好的耐磨性.
关键词 复合镀化学镀镍-磷纳米氧化铝    
Abstract:Influences of anion surfactant (sodium dodecyl benzene sulfonate, sodium lauryl sulfate) and cationic surfactant(triethanolamine) on deposition of nickel-phosphorus-nanometer Al2O3 composite coatings were investigated. Influences of sorts and addition quantity of surfactant on deposition rate,hardness and abrasion resistance of coatings were discussed. The appearances of the various composite coatings were observed by scanning electron microscope (SEM).The content of nanometer Al2O3 particle was measured by energy dispersion spectroscopy (EDS). The experiment results show that the better amounts of two anion surfactants are both 50 mg/L and cationic surfactant is 100 mg/L in nanometer composite plating bath. The cationic surfactants deposit has high content of nanometer Al2O3,fast deposition velocity,good abrasion resistance and uniform dispersion of nanometer Al2O3 particles among three surfactants. The nano-Al2O3 composite deposit has higher microhardness and better abrasion resistance than that of electroless Ni-P and micro-Al2O3 composite electroless Ni-P.
Key wordscomposite    electroless plating    Ni-P    nanometer    alumina
收稿日期: 2005-09-14     
ZTFLH:  TG178  
通讯作者: 周琦     E-mail: zhouqi2469@163.com

引用本文:

周琦; 邵忠宝; 贺春林; 邵忠财; 才庆魁; 高维娜 . 表面活性剂对镍-磷-纳米氧化铝复合镀的影响[J]. 中国腐蚀与防护学报, 2007, 27(1): 27-30 .
. IMPACT OF SURFACTANTS ON ELECTROLESS DEPOSITIONNi-P-Nano-Al2O3 COMPOSITE COATING. J Chin Soc Corr Pro, 2007, 27(1): 27-30 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2007/V27/I1/27

[1]M櫣ller B,Ferkel H.Al2O3-nanoparticle distribution in plated nick-el composite films[J].Nanostructured Materials,1998,10(8):1285-1288
[2]Wu MH,Li Z,Xia F F,et al.Mechanism and technology of ultra-sonic electrodepositing nano Ni-Si3N4-x composite layer[J].Ma-ter.Prot.,2004,37(7):29-31(吴蒙华,李智,夏法锋.纳米Ni-Si3N4-x复合镀层的超声电沉积机理及工艺研究[J].材料保护,2004,37(7):29-31)
[3]Zheng R L,Zhang J S,Liu R T.Aresearch on the fractal propertiesof the nanometerα-Al2O3particles chemical-complex-platedfilms[J].Chin.J.Chem.Phys.,1997,10(6):529-534(郑瑞伦,张家树,刘荣泰.纳米微粒α-Al2O3化学复合镀层分形特性探讨[J].化学物理学报,1997,10(6):529-534)
[4]Chen X H,Cheng F Q,Li S L,et al.Electrodeposited nickel compos-ites containing carbon nanotubes[J].Surf.Coat.Technol.,2002,155:274-278
[5]Huang X M,Wu Y C,Zheng Y C.Effect of nanometer particle dis-perse method on the structure and properties of electroless compositecoating[J].Plating and Finishing,1999,21(5):12-15(黄新民,吴玉程,郑玉春等.分散方法对纳米颗粒化学复合镀层组织及性能的影响[J].电镀与精饰,1999,21(5):12-15)
[6]Gao J Q,Liu L,Shen B.Crystallization behavior of Al2O3nano-composite coatings prepared by electroless plating[J].Chin.J.Non-fer.Met.,2004,14(1):64-68(高加强,刘磊,沈彬等.纳米氧化铝粒子对化学镀镍-磷合金晶化行为的影响[J].中国有色金属学报,2004,14(1):64-68)
[7]Erler F,Jakob C,Romanus H.Interface behaviour in nickel compos-ite coatings with nano-particles of oxidic ceramic[J].Electrochi.Acta,2003,48:3063-3070
[8]Wang S C,J W C.Kinetics of electroplating process of nano-sizedceramic particle/Ni composite[J].Mater.Chem.Phys.,2003,78:574-580
[9]He HY,Chen J Q.Aprocess of composite function coatings of strongabrasion-resistance and reducing friction[P].CN Pat:1435514A,2003-08-13(何洪胤,陈敬全.一种获得高耐磨,减摩纳米复合功能镀层的工艺[P].CN Pat:1435514A,2003-08-13)
[10]Zheng X M,Li Z L,Dong J,et al.Research of electroless compositeplating of nickel-nanometer Al2O3[J].Surf.Technol.,2003,32(5):23-25(郑筱梅,李自林,董洁等.镍基纳米氧化铝化学复合镀研究[J].表面技术,2003,32(5):23-25)
[11]Zhang HJ,Jia X L,Liu Z J,et al.Dispersion and mechanic inter-actions of nanocrystalline Al2O3—SiO2powder[J].J.Chin.Ce-ramic Soc.,2003,31(10):928-933(张海军,贾晓林,刘战杰等.纳米Al2O3—SiO2的分散及颗粒间力的相互作用[J].硅酸盐学报,2003,31(10):928-933)
[1] 王海卫, 常森, 栾新刚, 宋雪梅, 王稹, 李彦樟, 陈建利, 张计荣, 韩明, 丘丹圭. 纳米Al2O3改性SiBCN陶瓷高温粘接剂的制备与性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[2] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[3] 白鹏凯, 许萍. 水处理领域中的绿色环保阻垢剂及其研究进展[J]. 中国腐蚀与防护学报, 2020, 40(2): 87-95.
[4] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[5] 陈嘉晨,王忠维,乔利杰,岩雨. 机械摩擦磨损与电化学腐蚀在特殊环境中的作用机制[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[6] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[7] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[8] 陈浩,陈庆,辛丽,时龙,朱圣龙,王福会. DD98M纳米晶AlSi渗层制备及抗高温腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
[9] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[10] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[11] 蔡光义,王浩伟,赵苇杭,董泽华. 添加纳米CeO2对聚氨酯涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[12] 郭宝会, 邱友绪, 李海龙. 人工神经网络在钛合金表面Ni-SiC复合电镀工艺中的应用[J]. 中国腐蚀与防护学报, 2017, 37(4): 389-394.
[13] 张娟,刘自强,冯涛,温世峰,陈瑞卿. 碳纳米管含量对环氧树脂涂层性能的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 254-260.
[14] 丁诗炳,项腾飞,李澄,郑顺丽,王绮,杜梦萍. 两步法制备超疏水耐蚀镍镀层[J]. 中国腐蚀与防护学报, 2016, 36(5): 450-456.
[15] 钱超,云虹,张志国,徐群杰. 纳米ZnS增强聚苯胺复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2016, 36(3): 273-280.