|
|
Cr2+/Cr3+对FLiNaK熔盐体系电偶腐蚀抑制行为及机理研究 |
左勇1,2,3( ), 秦越强1,3, 申淼1,2, 杨新梅1,2,3 |
1.中国科学院上海应用物理研究所 上海 201800 2.中国科学院洁净能源创新研究院 大连 116023 3.中国科学院大学 北京 100049 |
|
Effect of Cr2+/Cr3+ on Galvanic Corrosion Inhibition of Dissimilar Metallic Materials in 46.5%LiF-11.5%NaF-42.0%KF Molten Salts System |
ZUO Yong1,2,3( ), QIN Yueqiang1,3, SHEN Miao1,2, YANG Xinmei1,2,3 |
1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China 2.Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China 3.University of Chinese Academy of Sciences, Beijing 100049, China |
引用本文:
左勇, 秦越强, 申淼, 杨新梅. Cr2+/Cr3+对FLiNaK熔盐体系电偶腐蚀抑制行为及机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 341-345.
Yong ZUO,
Yueqiang QIN,
Miao SHEN,
Xinmei YANG.
Effect of Cr2+/Cr3+ on Galvanic Corrosion Inhibition of Dissimilar Metallic Materials in 46.5%LiF-11.5%NaF-42.0%KF Molten Salts System. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 341-345.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2020.090
或
https://www.jcscp.org/CN/Y2021/V41/I3/341
|
1 |
Williams D F. Assessment of candidate molten salt coolants for the NGNP/NHI heat-transfer loop [R]. Tennessee: Oak Ridge National Laboratory, 2006
|
2 |
Gehin J C, Powers J J. Liquid fuel molten salt reactors for thorium utilization [J]. Nucl. Technol., 2016, 194: 152
|
3 |
Farmer J, El-dasher B, De Caro M S, et al. Corrosion of ferritic steels in high temperature molten salt coolants for nuclear applications [A]. MRS Fall Meeting [C]. Bosten, 2008
|
4 |
Dai Z M. 17-Thorium molten salt reactor nuclear energy system (TMSR) [A]. Dolan T J ed. Molten Salt Reactors and Thorium Energy [M]. Duxford, UK: Woodhead Publishing, 2017: 531-540
|
5 |
Vignarooban K, Xu X H, Arvay A, et al. Heat transfer fluids for concentrating solar power systems-A review [J]. Appl. Energy, 2015, 146: 383
|
6 |
Mohan G, Venkataraman M, Gomez-Vidal J, et al. Thermo-economic analysis of high-temperature sensible thermal storage with different ternary eutectic alkali and alkaline earth metal chlorides [J]. Solar Energy, 2018, 176: 350
|
7 |
Myers P D, Goswami D Y. Thermal energy storage using chloride salts and their eutectics [J]. Appl. Thermal Eng., 2016, 109: 889
|
8 |
Romatoski R R, Hu L W. Fluoride salt coolant properties for nuclear reactor applications: A review [J]. Ann. Nucl. Energy, 2017, 109: 635
|
9 |
Jiang L, Ye X X, Wang D J, et al. Synchrotron radiation-based materials characterization techniques shed light on molten salt reactor alloys [J]. Nucl. Sci. Techniq., 2020, 31: 6
|
10 |
Allen T R, Sridharan K, Tan L, et al. Materials challenges for Generation IV nuclear energy systems [J]. Nucl. Technol., 2008, 162: 342
|
11 |
Zuo Y, Cao M P, Shen M, et al. Effect of Mg on corrosion of 316H stainless steel in molten salts MgCl2-NaCl-KCl [J]. J. Chin. Soc. Corros. Prot., 2020, 41: 80
|
11 |
左勇, 曹明鹏, 申淼等. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 41: 80
|
12 |
Ding X B, Sun H, Yu G J, et al. Corrosion behavior of Hastelloy N and 316L stainless steel in molten LiF-NaF-KF [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 543
|
12 |
丁祥彬, 孙华, 俞国军等. Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 543
|
13 |
Cheng W J, Sellers R S, Anderson M H, et al. Zirconium effect on the corrosion behavior of 316l stainless steel alloy and hastelloy-N superalloy in molten fluoride salt [J]. Nucl. Technol., 2013, 183: 248
|
14 |
Fernández A G, Cabeza L F. Corrosion monitoring and mitigation techniques on advanced thermal energy storage materials for CSP plants [J]. Solar Energy Mater. Solar Cells, 2019, 192: 179
|
15 |
Zhang J S, Forsberg C W, Simpson M F, et al. Redox potential control in molten salt systems for corrosion mitigation [J]. Corros. Sci., 2018, 144: 44
|
16 |
Wang Y L, Liu H J, Zeng C L. Galvanic corrosion of pure metals in molten fluorides [J]. J. Fluor. Chem., 2014, 165: 1
|
17 |
Zhang B H, Cong W B, Yang P. Electrochemical Corrosion and Protection for Metals [M]. Beijing: Chemical Industry Press, 2005
|
17 |
张宝宏, 丛文博, 杨萍. 金属电化学腐蚀与防护 [M]. 北京: 化学工业出版社, 2005
|
18 |
Olander D. Redox condition in molten fluoride salts: Definition and control [J]. J. Nucl. Mater., 2002, 300: 270
|
19 |
Del Cul G D, Williams D F, Toth L M. Redox potential of novel electrochemical buffers useful for corrosion prevention in molten fluorides [A]. Proceedings of the 13th International Symposium [C]. Pennington, 2002
|
20 |
Gibilaro M, Massot L, Chamelot P. A way to limit the corrosion in the Molten Salt Reactor concept: the salt redox potential control [J]. Electrochim. Acta, 2015, 160: 209
|
21 |
Zuo Y, Huang H, Li X Y, et al. Experimental installation for molten salt electrochemistry [P]. Chinese patent: 102553664, 2012
|
21 |
左勇, 黄鹤, 李晓云等. 熔盐电化学实验装置 [P]. 中国专利: 102553664, 2012)
|
22 |
Zuo Y, Wang Y, Tang R, et al. A kind of FLiNaK molten salts and its preparation method, reactor and preparation apparatus [P]. Chinese Patent: 108376570, 2018
|
22 |
左勇, 汪洋, 汤睿等. 一种FLiNaK熔盐及其制备方法、反应器和制备装置 [P]. 中国专利: 108376570, 2018)
|
23 |
Qin Y Q, Zuo Y, Shen M. Corrosion inhibition of 316l stainless steel in FLiNaK-CrF3/CrF2 redox buffering molten salt system [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 182
|
23 |
秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 182
|
24 |
Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed. Beijing: Chemical Industry Press, 2008
|
24 |
曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|