Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (3): 341-345    DOI: 10.11902/1005.4537.2020.090
  研究报告 本期目录 | 过刊浏览 |
Cr2+/Cr3+对FLiNaK熔盐体系电偶腐蚀抑制行为及机理研究
左勇1,2,3(), 秦越强1,3, 申淼1,2, 杨新梅1,2,3
1.中国科学院上海应用物理研究所 上海 201800
2.中国科学院洁净能源创新研究院 大连 116023
3.中国科学院大学 北京 100049
Effect of Cr2+/Cr3+ on Galvanic Corrosion Inhibition of Dissimilar Metallic Materials in 46.5%LiF-11.5%NaF-42.0%KF Molten Salts System
ZUO Yong1,2,3(), QIN Yueqiang1,3, SHEN Miao1,2, YANG Xinmei1,2,3
1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(3504 KB)   HTML
摘要: 

利用腐蚀电化学以及浸泡腐蚀实验结果表明,通过向FLiNaK熔盐体系引入Cr2+/Cr3+氧化还原缓冲离子对,可以使不同金属材料在该熔盐体系的电位差缩小乃至消除,并抑制不同金属材料之间的电偶腐蚀。

关键词 熔盐电偶腐蚀氧化还原缓冲离子对腐蚀抑制    
Abstract

Galvanic corrosion should be considered when dissimilar metallic materials in contact with each other in a molten salt system of high ionic conductivity. Corrosion electrochemistry and immersion corrosion tests indicated that the difference of the corrosion potentials of different metal materials can be decreased or diminished by coupling Cr2+/Cr3+ into the 46.5%LiF-11.5%NaF-42.0%KF (in mole fraction) molten salt. Thus, the galvanic corrosion behavior between different metal materials can be effectively inhibited.

Key wordsmolten salt    galvanic corrosion    redox buffering ion pair    corrosion mitigation
收稿日期: 2020-05-25     
ZTFLH:  O646.6  
基金资助:中国科学院战略性先导科技专项(XDA21000000)
通讯作者: 左勇     E-mail: zuoyong@sinap.ac.cn
Corresponding author: ZUO Yong     E-mail: zuoyong@sinap.ac.cn

引用本文:

左勇, 秦越强, 申淼, 杨新梅. Cr2+/Cr3+对FLiNaK熔盐体系电偶腐蚀抑制行为及机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 341-345.
Yong ZUO, Yueqiang QIN, Miao SHEN, Xinmei YANG. Effect of Cr2+/Cr3+ on Galvanic Corrosion Inhibition of Dissimilar Metallic Materials in 46.5%LiF-11.5%NaF-42.0%KF Molten Salts System. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 341-345.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.090      或      https://www.jcscp.org/CN/Y2021/V41/I3/341

图1  3种熔盐体系不同金属材料的极化曲线
图2  不同CrF2添加量下金属材料在FLiNaK+1000 μg/g CrF3熔盐中的腐蚀电位
图3  不同熔盐体系316L不锈钢与GH3535合金之间的电偶腐蚀电流-时间曲线
图4  316L不锈钢 (与等面积GH3535偶联) 在3种熔盐中浸泡24 h后截面微观形貌
1 Williams D F. Assessment of candidate molten salt coolants for the NGNP/NHI heat-transfer loop [R]. Tennessee: Oak Ridge National Laboratory, 2006
2 Gehin J C, Powers J J. Liquid fuel molten salt reactors for thorium utilization [J]. Nucl. Technol., 2016, 194: 152
3 Farmer J, El-dasher B, De Caro M S, et al. Corrosion of ferritic steels in high temperature molten salt coolants for nuclear applications [A]. MRS Fall Meeting [C]. Bosten, 2008
4 Dai Z M. 17-Thorium molten salt reactor nuclear energy system (TMSR) [A]. Dolan T J ed. Molten Salt Reactors and Thorium Energy [M]. Duxford, UK: Woodhead Publishing, 2017: 531-540
5 Vignarooban K, Xu X H, Arvay A, et al. Heat transfer fluids for concentrating solar power systems-A review [J]. Appl. Energy, 2015, 146: 383
6 Mohan G, Venkataraman M, Gomez-Vidal J, et al. Thermo-economic analysis of high-temperature sensible thermal storage with different ternary eutectic alkali and alkaline earth metal chlorides [J]. Solar Energy, 2018, 176: 350
7 Myers P D, Goswami D Y. Thermal energy storage using chloride salts and their eutectics [J]. Appl. Thermal Eng., 2016, 109: 889
8 Romatoski R R, Hu L W. Fluoride salt coolant properties for nuclear reactor applications: A review [J]. Ann. Nucl. Energy, 2017, 109: 635
9 Jiang L, Ye X X, Wang D J, et al. Synchrotron radiation-based materials characterization techniques shed light on molten salt reactor alloys [J]. Nucl. Sci. Techniq., 2020, 31: 6
10 Allen T R, Sridharan K, Tan L, et al. Materials challenges for Generation IV nuclear energy systems [J]. Nucl. Technol., 2008, 162: 342
11 Zuo Y, Cao M P, Shen M, et al. Effect of Mg on corrosion of 316H stainless steel in molten salts MgCl2-NaCl-KCl [J]. J. Chin. Soc. Corros. Prot., 2020, 41: 80
11 左勇, 曹明鹏, 申淼等. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 41: 80
12 Ding X B, Sun H, Yu G J, et al. Corrosion behavior of Hastelloy N and 316L stainless steel in molten LiF-NaF-KF [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 543
12 丁祥彬, 孙华, 俞国军等. Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 543
13 Cheng W J, Sellers R S, Anderson M H, et al. Zirconium effect on the corrosion behavior of 316l stainless steel alloy and hastelloy-N superalloy in molten fluoride salt [J]. Nucl. Technol., 2013, 183: 248
14 Fernández A G, Cabeza L F. Corrosion monitoring and mitigation techniques on advanced thermal energy storage materials for CSP plants [J]. Solar Energy Mater. Solar Cells, 2019, 192: 179
15 Zhang J S, Forsberg C W, Simpson M F, et al. Redox potential control in molten salt systems for corrosion mitigation [J]. Corros. Sci., 2018, 144: 44
16 Wang Y L, Liu H J, Zeng C L. Galvanic corrosion of pure metals in molten fluorides [J]. J. Fluor. Chem., 2014, 165: 1
17 Zhang B H, Cong W B, Yang P. Electrochemical Corrosion and Protection for Metals [M]. Beijing: Chemical Industry Press, 2005
17 张宝宏, 丛文博, 杨萍. 金属电化学腐蚀与防护 [M]. 北京: 化学工业出版社, 2005
18 Olander D. Redox condition in molten fluoride salts: Definition and control [J]. J. Nucl. Mater., 2002, 300: 270
19 Del Cul G D, Williams D F, Toth L M. Redox potential of novel electrochemical buffers useful for corrosion prevention in molten fluorides [A]. Proceedings of the 13th International Symposium [C]. Pennington, 2002
20 Gibilaro M, Massot L, Chamelot P. A way to limit the corrosion in the Molten Salt Reactor concept: the salt redox potential control [J]. Electrochim. Acta, 2015, 160: 209
21 Zuo Y, Huang H, Li X Y, et al. Experimental installation for molten salt electrochemistry [P]. Chinese patent: 102553664, 2012
21 左勇, 黄鹤, 李晓云等. 熔盐电化学实验装置 [P]. 中国专利: 102553664, 2012)
22 Zuo Y, Wang Y, Tang R, et al. A kind of FLiNaK molten salts and its preparation method, reactor and preparation apparatus [P]. Chinese Patent: 108376570, 2018
22 左勇, 汪洋, 汤睿等. 一种FLiNaK熔盐及其制备方法、反应器和制备装置 [P]. 中国专利: 108376570, 2018)
23 Qin Y Q, Zuo Y, Shen M. Corrosion inhibition of 316l stainless steel in FLiNaK-CrF3/CrF2 redox buffering molten salt system [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 182
23 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 182
24 Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed. Beijing: Chemical Industry Press, 2008
24 曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008
[1] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[2] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[4] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[5] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[6] 白苗苗, 白子恒, 蒋立, 张东玖, 姚琼, 魏丹, 董超芳, 肖葵. H62黄铜/TC4钛合金焊接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[7] 黄宸,黄峰,张宇,刘海霞,刘静. 高强耐候钢焊接接头电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[8] 陈超,梁艳芬,梁天权,满泉言,罗毅东,张修海,曾建民. 稀土复合掺杂ZrO2陶瓷涂层抗Na2SO4+NaVO3热腐蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[9] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[10] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[11] 王希靖, 王博士, 杨超, 杨艳, 沈斌. 纯Ni母材及焊缝在熔融Na2SO4-K2SO4中热腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[12] 王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[13] 刘艳洁,王振尧,王彬彬,曹岩,霍阳,柯伟. 实时监测技术研究薄液膜下电偶腐蚀的机理[J]. 中国腐蚀与防护学报, 2017, 37(3): 261-266.
[14] 赵欣,胡裕龙,董赋,张晓东,王智峤. 湿态电绝缘对电偶腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 175-182.
[15] 刘光明,刘康生,毛晓飞,万中平,黄健航,于明明,汪元奎. T91钢在KCl+Na2SO4+K2SO4熔融盐中的热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 23-28.