Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (6): 469-476    DOI: 10.11902/1005.4537.2018.173
  研究报告 本期目录 | 过刊浏览 |
钛合金表面Al2O3陶瓷膜制备及性能研究
姜冬雪1,2,付颖3,张峻巍1(),张伟2,4(),辛丽2,朱圣龙2,王福会5
1. 辽宁科技大学材料与冶金学院 鞍山 114051
2. 中国科学院金属研究所 沈阳 110016
3. 大连华锐重工起重机有限公司 大连 116052
4. 福建龙溪轴承 (集团) 股份有限公司 漳州 363000
5. 东北大学材料科学与工程学院 沈阳材料科学国家研究中心 沈阳 110819
Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface
JIANG Dongxue1,2,FU Ying3,ZHANG Junwei1(),ZHANG Wei2,4(),XIN Li2,ZHU Shenglong2,WANG Fuhui5
1. School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
2. Shenyang Materials Science National Research Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. Dalian Huarui Heavy Industry Crane Co. Ltd. , Dalian 116052, China
4. Fujian Longxi Bearing (Group) Corporation Limited, Zhangzhou 363000, China
5. Shenyang National Laboratory for Materials Science, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
全文: PDF(4477 KB)   HTML
摘要: 

采用多弧离子镀技术在TC4钛合金表面制备了厚度约40 μm的纯Al层,然后在恒流模式下对其进行不同时间的微弧氧化处理,以获得耐磨的Al2O3陶瓷膜。采用扫描电镜、X射线衍射仪、显微硬度计、摩擦磨损试验机和拉伸试验机对钛合金镀铝层微弧氧化膜的微观组织结构、显微硬度、耐磨性和结合力进行了观察和测量。结果表明:微弧氧化陶瓷层主要由γ-Al2O3α-Al2O3以及少量的非晶相SiO2组成,膜层均匀、致密。随着微弧氧化时间的延长,Al2O3陶瓷层厚度增加,镀铝层厚度减小。微弧氧化3 h时,Al2O3膜致密层硬度达到1261 HV。氧化4 h,Al2O3陶瓷层厚达60~70 μm,镀铝层几乎全部氧化,钛合金基材亦发生轻微氧化;但是,基体钛合金的氧化反而导致Al2O3膜层内形成贯穿裂纹等缺陷,膜层硬度下降,膜层与钛合金基材的结合强度降低。Al2O3陶瓷膜的摩擦系数较钛合金基材的有所降低,磨损量明显降低。Al2O3陶瓷膜/镀铝层/钛合金体系结合强度大于40 MPa,最高可达68 MPa。

关键词 钛合金离子镀铝微弧氧化微观结构耐磨性结合强度    
Abstract

The application of Ti-alloys is restricted to its low hardness and poor wear resistance. In this paper, a pure Al-fim of 40 μm in thickness was deposited on the surface of TC4 Ti-alloy by multi-arc ion plating, and then micro-arc oxidation (MAO) in constant current mode was carried out to obtain wear-resistant ceramic films. The microstructure, microhardness, wear resistance and bonding strength of MAO films were characterized by mean of SEM, XRD, micro hardness tester etc. The results show that the ceramic film is mainly composed of γ-Al2O3, α-Al2O3 and a small amount of amorphous SiO2, and the film is uniform and compact. With the increase of the MAO time, the thickness of alumina ceramic film increases. The hardness of the dense portion of MAO coating is 1261 HV after micro-arc oxidation for 3 h. For the case of micro-arc oxidation for 4 h, the thickness of the generated alumina ceramic film is 60~70 μm, while almost the entire pre-deposited Al-film is oxidized, and the substrate Ti-alloy is slightly oxidized. At the same time, some penetration cracks in the oxide film was found, therefore, the hardness of the film and the bonding strength between the film and substrate all decrease. The friction coefficient of MAO ceramic film is lower than that of Ti-alloy substrate, and the wear rate is also obviously reduced. In sum, the bonding strength of MAO ceramic films with the substrate is higher than 40 MPa, whereas, the maximum bonding strength can reach 68 MPa.

Key wordsTi-alloy    multi-arc ion plating    micro-arc oxidation    microstructure    wear resistance    adhesive strength
收稿日期: 2018-11-23     
ZTFLH:  TG174.45  
基金资助:国家自然科学基金(U1537107);国家自然科学基金(51871229);辽宁科技大学研究生教育改革与创新项目(2017YJSCX08);辽宁省教育科学“十三五”规划重点课题(JG18DA008);STS 计划配套项目(2016T3030)
通讯作者: 张峻巍,张伟     E-mail: ustlzjw@163.com;weizhang@imr.ac.cn
Corresponding author: Junwei ZHANG,Wei ZHANG     E-mail: ustlzjw@163.com;weizhang@imr.ac.cn
作者简介: 姜冬雪,女,1990年,硕士生

引用本文:

姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
Dongxue JIANG, Ying FU, Junwei ZHANG, Wei ZHANG, Li XIN, Shenglong ZHU, Fuhui WANG. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 469-476.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.173      或      https://www.jcscp.org/CN/Y2019/V39/I6/469

图1  TC4钛合金离子镀铝层MAO膜的表面形貌
图2  TC4钛合金离子镀铝层MAO膜的截面形貌
图3  TC4钛合金离子镀铝层MAO 处理4 h形成的膜层截面元素EDS分析结果
图4  TC4钛合金离子镀铝层MAO膜的XRD分析结果
PointMAO for 2 hMAO for 3 hMAO for 4 h
Loose layerDense layerLoose layerDense layerLoose layerDense layer
176911195861151389982
258611686491431295846
351612334611277449805
475610964711248525945
560210097491194300832
Average value64611255831261392886
表1  TC4钛合金镀铝层MAO膜疏松层与致密层硬度的测量值与平均值 (HV)
图5  TC4钛合金及其镀铝层MAO膜的摩擦系数曲线
SampleFilm thickness / μmTime / minFriction coefficientWear volume / mm3Wear rate / mm3·N-1·m-1
TC40300.824.603×10-12.572×10-4
MAO for 2 h40~50300.621.107×10-36.150×10-6
MAO for 3 h50~60300.633.375×10-31.875×10-5
MAO for 4 h60~70300.718.936×10-34.964×10-5
表2  TC4钛合金及其镀铝层MAO膜的摩擦磨损实验结果
图6  TC4钛合金及其表面镀铝层MAO膜磨损后的表面和截面形貌
[1] Aliofkhazraei M, Gharabagh R S, Teimouri M, et al. Ceria embedded nanocomposite coating fabricated by plasma electrolytic oxidation on titanium [J]. J. Alloy. Compd., 2016, 685: 376
[2] Choi B J, Kim I Y, Lee Y Z, et al. Microstructure and friction/wear behavior of (TiB+TiC) particulate-reinforced titanium matrix composites [J]. Wear, 2014, 318: 68
[3] Parlikar C, Alam M Z, Sarkar R, et al. Effect of oxidation resistant Al3Ti coating on tensile properties of a near α-Ti alloy [J]. Surf. Coat. Technol., 2013, 236: 107
[4] Wang S X, Zhao Q, Liu D X, et al. Microstructure and elevated temperature tribological behavior of TiO2/Al2O3 composite ceramic coating formed by microarc oxidation of Ti6Al4V alloy [J]. Surf. Coat. Technol., 2015, 272: 343
[5] Sitek R, Kaminski J, Borysiuk J, et al. Microstructure and properties of titanium aluminides on Ti6Al4V titanium alloy produced by chemical vapor deposition method [J]. Intermetallics, 2013, 36: 36
[6] Guo C, Zhou J S, Zhao J R, et al. Microstructure and friction and wear behavior of laser boronizing composite coatings on titanium substrate [J]. Appl. Surf. Sci., 2011, 257: 4398
[7] Gao C, Dai L, Meng W, et al. Electrochemically promoted electroless nickel-phosphorous plating on titanium substrate [J]. Appl. Surf. Sci., 2017, 397: 912
[8] Spies H J. Surface engineering of aluminium and titanium alloys: An overview [J]. Surf. Eng., 2010, 26: 126
[9] Zhecheva A, Sha W, Malinov S, et al. Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods [J]. Surf. Coat. Technol., 2005, 200: 2192
[10] Fu Y, Zhang Y, Bao X Y, et al. Research progress on wear-resistant coatings for Ti-alloy [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 117
[10] (付颖, 张艳, 包星宇等. 钛合金表面耐磨涂层研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 117)
[11] Vladimirov B V, Krit B L, Lyudin V B, et al. Microarc oxidation of magnesium alloys: A review [J]. Surf. Eng. Appl. Electrochem., 2014, 50: 195
[12] Sanchez A G, Ballarre J, Orellano J C, et al. Surface modification of zirconium by anodisation as material for permanent implants: in vitro and in vivo study [J]. J. Mater. Sci. Mater. Med., 2013, 24: 161
[13] Zheng B J, Zhao Y, Xue W B, et al. Microbial influenced corrosion behavior of micro-arc oxidation coating on AA2024 [J]. Surf. Coat. Technol., 2013, 216: 100
[14] Matykina E, Arrabal R, Mohedano M, et al. Stability of plasma electrolytic oxidation coating on titanium in artificial saliva [J]. J. Mater. Sci. Mater. Med., 2013, 24: 37
[15] Shokouhfar M, Allahkaram S R. Formation mechanism and surface characterization of ceramic composite coatings on pure titanium prepared by micro-arc oxidation in electrolytes containing nanoparticles [J]. Surf. Coat. Technol., 2016, 291: 396
[16] Li Q B, Yang W B, Wang D A, et al. Recent advances of wear resistant and lubricating micro-arc oxidation coatings on titanium alloyss [J]. Mater. Prot., 2017, 50(8): 63
[16] (李青彪, 杨文斌, 王道爱等. 钛合金表面耐磨润滑微弧氧化膜的研究进展, 材料保护, 2017, 50(8): 63)
[17] Xue W B, Wang C, Chen R Y, et al. Structure and properties characterization of ceramic coatings produced on Ti-6Al-4V alloy by microarc oxidation in aluminate solution [J]. Mater. Lett., 2002, 52: 435
[18] Yerokhin A L, Nie X, Leyland A, et al. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V Alloy [J]. Surf. Coat. Technol., 2000, 130: 195
[19] Qin Y K, Xiong D S, Li J L, et al. Compositions and tribological properties of PEO coatings on Ti6Al4V alloy [J]. Surf. Eng., 2017, 33: 895
[20] Lu C, Xie F Q, Zhu L P. Microstructure and tribological properties of microarc oxidation coatings on Al-Si Alloy [J]. Key Eng. Mater., 2016, 703: 112
[21] Ouyang X Q, Zhou L Y, Yu B, et al. Structure and wear resistance of micro-arc oxide film of Al that deposited on TC4 Alloy by magnetron sputtering technology [J]. J. Nanchang Hangkong Univ. Nat. Sci., 2014, 28(2): 61
[21] (欧阳小琴, 周琳燕, 余斌等. TC4钛合金磁控溅射镀铝后微弧氧化膜的结构与耐磨性能研究 [J]. 南昌航空大学学报: 自然科学版, 2014, 28(2): 61)
[22] Hu C J, Chiu P H. Wear and corrosion resistance of pure titanium subjected to aluminization and coated with a microarc oxidation ceramic coating [J]. Int. J. Electrochem. Sci., 2014, 10: 4290
[23] Bu T, Yang L, Liu W J, et al. Effects of ion plating process on the microstructure and properties of the TC4 titanium alloy after microarc oxidation [J]. Technol. Dev. Enterpr., 2016, 35(12): 14
[23] (卜彤, 杨莲, 刘为杰等. 多弧离子镀铝工艺对TC4钛合金微弧氧化膜结构及性能的影响 [J]. 企业技术开发, 2016, 35(12): 14)
[24] Liu X J, Li G, Xia Y. Investigation of the discharge mechanism of plasma electrolytic oxidation using Ti tracer [J]. Surf. Coat. Technol., 2012, 206: 4462
[25] Gao F Y, Li H, Li G, et al. The plasma electrolytic oxidation micro-discharge channel model and its microstructure characteristic based on Ti tracer [J]. Appl. Surf. Sci., 2018, 431: 13
[26] Xue W B, Deng Z W, Lai Y C, et al. Analysis of phase distribution for ceramic coatings formed by microarc oxidation on aluminum alloy [J]. J. Am. Ceram. Soc., 1998, 81: 1365
[1] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[3] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[4] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[5] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[6] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[7] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[9] 于美,魏新帝,范世洋,刘建华,李松梅,钟锦岩. 应力作用下2297铝锂合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[10] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[11] 樊志民, 于锦, 宋影伟, 单大勇, 韩恩厚. 镁合金点蚀的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[12] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[13] 王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[14] 郝利新, 贾瑞灵, 张慧霞, 张伟, 赵婷, 翟熙伟. 7A52铝合金双丝MIG焊接头的不均匀性对其表面微弧氧化膜腐蚀防护作用的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 219-225.
[15] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.