Please wait a minute...
中国腐蚀与防护学报  2003, Vol. 23 Issue (3): 179-182     
  研究报告 本期目录 | 过刊浏览 |
用高温显微镜原位观察钢中氢腐蚀裂纹愈合过程
董超芳;徐景;李晓刚
北京科技大学
IN-SITU INVESTIGATION OF HEALING ON HYDROGEN-ATTACKEDCRACK IN STEEL BY HIGH-TEMPERATURE MICROSCOPE
Chaofang Dong;Jing Xv;Xiaogang Li
北京科技大学
全文: PDF(141 KB)  
摘要: 利用高温显微镜,对碳钢氢腐蚀裂纹的愈合过程进行原位、 实时观察,通过录象记录了整个裂纹愈合实验过程.结果表明,裂纹在加热到630℃左右时, 发生明显愈合而变小变细.实验中造成的CH4气体散失和内部裂纹表面化使得实验结果与真 实情况有一定的偏差,观察得到裂纹闭合的临界温度630℃低于实际裂纹闭合温 度.发生氢蚀裂纹愈合的机制是热扩散,动力是氢蚀气泡长大导致的塑性变形能Es.在 Fe、C和H原子扩散足够快的情况下,氢蚀裂纹愈合的条件是Es大于2γ/r(γ为界面 表面张力,r为气泡半径或裂纹半长).
关键词 高温显微镜原位氢腐蚀裂纹愈合    
Abstract:The in-situ observation of hydrogen-attacked cracks healing in carbon steel had been done by high-temperature microscope.The whole cracks healing process was recorded at the same time.The results show that the c racks became obviously thinner when heated under 630℃.The escaping of methane a nd inner crack exposure on specimen surface make a certain difference between th is experiment and true condition,the analysis indicates the cracks healing tempe rature in experiment is lower than actual system.The healing of hydrogen attacke d cracks is closely related to heat diffusion of Fe and C atoms in steel.The dri ving force of crack healing results from the plastic deforming energy Es i nduced by the growth of hydrogen attacked bubbles or cracks.The critical conditi on of healing of bubbles or cracks is Es ≥2γ/r (where γ is the surface tension,r is the radius of bubbles or half length of crack).
Key wordshigh-temperature microscope    in-situ    hydrogen attack    crack    healing
收稿日期: 2001-11-05     
ZTFLH:  TG111.91  
通讯作者: 董超芳     E-mail: dongchf@sina.com
Corresponding author: Chaofang Dong     E-mail: dongchf@sina.com

引用本文:

董超芳; 徐景; 李晓刚 . 用高温显微镜原位观察钢中氢腐蚀裂纹愈合过程[J]. 中国腐蚀与防护学报, 2003, 23(3): 179-182 .
Chaofang Dong, Jing Xv, Xiaogang Li. IN-SITU INVESTIGATION OF HEALING ON HYDROGEN-ATTACKEDCRACK IN STEEL BY HIGH-TEMPERATURE MICROSCOPE. J Chin Soc Corr Pro, 2003, 23(3): 179-182 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2003/V23/I3/179

[1] ZhouBenlian,WangYuqing,ChengHuiming,etal.,Materialsbionichealingandrecovery[A].TheSeminarofMaterialsSelf-HealingandSelf-Recovery[C].Beijing,1997(周本濂,王玉庆,成会明等.材料的仿生愈合与恢复[A].材料自愈合、自恢复学术研讨会资料[C].北京,1997
[2] JamesDPowers,AndreasMGlaeser.High-temperaturehealingofcrack-likeflawsintitaniumion-implantedsapphire[J].J .Am.CeramicSoc.,1993,76(9):2225-2234
[3] WeiDongbin,HanJingtao,XieJianxin,etal.,Experimentalstudyoninnercrackhealinginsteelduringhotplasticdeforming[J].ActaMetall.Sin.,2000,36(6):622-625(韦东滨,韩静涛,谢建新等.热塑性变形条件下钢内部裂纹愈合的实验研究[J]金属学报,2000,36(6):622-625)
[4] LiShen,GaoKewei,QiaoLijie,ChuWuyang.MoleculardynamicssimulationoftheroleofdislocationsinmicrocrackHealing[J].Ac taMechanicalSinica(EnglishSeries),2000,16(4):364-373
[5] SungRChoi,VeenaTikare.Crackhealingofaluminawitharesid ualglassyphase:strength,fracturetoughnessandfatigue[J].Mater.Sci.Eng.,A171(1993):77-83
[6] ZhouYizhou,XiaoSuhong,GanYang,etal.Thehealingofquenchedcrackincarbonsteelunderelectropulsing[J].ActaMetall.Sin.,2000,36(1):43-45(周亦胄,肖素红,甘阳等.脉冲电流作用下碳钢淬火裂纹的愈合[J].金属学报,2000,36(1):43-45)
[7] YuZongsen.HydrogenAttackofSteel[M ].Beijing:ChemicalIn dustryPress,1987(余宗森.钢的高温氢腐蚀[M].北京:化学工业出版社,1987)
[8] SongWeixi.Metallography[M ].Beijing:MetallurgyIndustryPress,1982(宋维锡.金属学[M ].北京:冶金工业出版社,1987)
[1] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[2] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[3] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[4] 张克乾,胡石林,唐占梅,张平柱. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[5] 樊志民, 于锦, 宋影伟, 单大勇, 韩恩厚. 镁合金点蚀的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[6] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[7] 鲍明昱, 任呈强, 胡静思, 刘博, 李佳蒙, 王丰, 刘丽, 郭小阳. 油气管材应力诱导腐蚀电化学行为探讨[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[8] 宋丰轩,赵启忠,李飞龙,任月路,黄奎,张新明. 不同时效态7050铝合金板材腐蚀速率测量[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[9] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[10] 朱若林,张志明,王俭秋,韩恩厚. 核电异种金属焊接接头的应力腐蚀裂纹扩展行为研究进展[J]. 中国腐蚀与防护学报, 2015, 35(3): 189-198.
[11] 唐占梅,胡石林,张平柱. 316Ti在含氯离子300℃高温水中的应力腐蚀开裂[J]. 中国腐蚀与防护学报, 2012, 32(4): 291-295.
[12] 钟曼英. 氢对2(1/4)Cr-1Mo钢力学性能的影响[J]. 中国腐蚀与防护学报, 2011, 31(3): 236-239.
[13] 唐子龙, 李辉, 李超. Na2SO4液膜下碳钢早期腐蚀速率及其环境因素的关联性[J]. 中国腐蚀与防护学报, 2010, 30(3): 217-221.
[14] 徐松;吴欣强;韩恩厚;柯伟. 316Ti不锈钢在模拟核电高温高压水中的腐蚀疲劳裂纹断口研究[J]. 中国腐蚀与防护学报, 2010, 30(2): 119-123.
[15] 唐子龙;李超;李辉. NaCl液膜下碳钢腐蚀速率及其与环境因素的关联性[J]. 中国腐蚀与防护学报, 2010, 30(1): 67-71.