Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (2): 141-147    
  研究报告 本期目录 | 过刊浏览 |
敏化和固溶处理对核级不锈钢Z3CN20-09M相间腐蚀敏感性的影响
易雪庆 陆永浩 陈迎锋
北京科技大学国家材料服役安全科学中心 北京 100083
Effects of Sensitization and Solid-solution Treatment on Interphase Corrosion Susceptibility of Nuclear Grade Z3CN-09M Stainless Steel
YI Xueqing, LU Yonghao, CHEN Yingfeng
National Center for Materials Service Safety, University of Science and Technology Beijing, Beijng, 100083, China
全文: PDF(4981 KB)  
摘要: 利用电化学动电位再活化法(EPR法)检测了核级不锈钢Z3CN20-09M奥氏体/铁素体相间腐蚀敏感性的程度。研究了敏化时间、敏化温度、固溶时间、固溶温度对Z3CN20-09M相间腐蚀性能的影响,并与304不锈钢的相应试验结果进行了对比。结果表明,核级不锈钢的相界抗腐蚀性要远高于304不锈钢;敏化温度越高,再活化率增加,相界腐蚀倾向增大,同时奥氏体晶内腐蚀加剧,敏化温度升到700°C后腐蚀到达饱和。敏化时间越长,相界腐蚀敏感性越大,但奥氏体晶内腐蚀程度下降。提高固溶温度或延长固溶时间,再活化率增加,相界和奥氏体晶内腐蚀均加剧。
关键词 核级不锈钢EPR相间腐蚀敏化固溶
中图分类号:
TG172文献标识码:A文章编号:1005-4537(2013)02-0141-07    
Abstract:The interphase corrosion susceptibility of the nuclear grade stainless steel (Z3CN20-09M) δ/γ interface boundary was investigated by using electrochemical potential reactivation method (EPR). The effects of time and temperature of sensitization and solid-solution treatments on the interphase corrosion resistance of Z3CN20-09M stainless steel were studied. The results showed that the interphase corrosion resistance of the nuclear grade stainless steel is much better than that of the 304 stainless steel. With increase the temperature of sensitization treatment, the re-activation rate ,interphase corrosion susceptibility and the degree of corrosion inside the austenite grains increase. These effects peak at 700 ℃. In addition, with increase the sensitization time, the interphase corrosion susceptibility increases, thebut the degree of corrosion inside the austenite grains decreases. The re-activation rate increase with increase of time or temperature of solid-solution treatment. The corrosion within the anstenite grains and on the phase interface are intersified as well.
Key wordsnuclear grade stainless steel    EPR    interphase corrosion    sensitization    solid solution
    

引用本文:

易雪庆 陆永浩 陈迎锋. 敏化和固溶处理对核级不锈钢Z3CN20-09M相间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2013, 33(2): 141-147.
. Effects of Sensitization and Solid-solution Treatment on Interphase Corrosion Susceptibility of Nuclear Grade Z3CN-09M Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2013, 33(2): 141-147.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I2/141

[1] Qin L Y, Song S Z, Lu Y Z. EIS characteristics of 304 stainless steel during intergraular corrosion [J]. J. Chin. Soc. Corros. Prot., 2007, 27(2): 74-79
(秦丽雁, 宋诗哲, 卢玉琢. 304不锈钢晶间腐蚀过程中的电化学阻抗谱特征. 中国腐蚀与防护学报 [J]. 2007, 27(2): 74-79)
[2] Duffault F, Pouzet J P, Lsoombe P. Potentiostatic study of structural modifications caused in a Ni-Cr-Fe alloy by heat treatment at 650 ℃[J]. Corros. Sci., 1966, 6(2): 83-85
[3] Clarke W L, Cowan R L, Walker W L. Comparative methods for measuring degree of sensitization in stainless steel [A]. Intergranular Corrosion of Stainless Alloys (ASTM STP 656) [C]. Philadephia: 1978
[4] Huang J, Liu X G, Zhang X Y, et al. Evaluation of suseptibility to intergranular corrosion of stainless steel by EPR measurement [J]. Corros. Sci.Prot.Techonol., 1992, 4(4): 242-249
(黄畯, 刘小光, 张晓云等. 电化学动电位再活化法评定不锈钢晶间腐蚀敏感性的研究 [J]. 腐蚀科学与防护技术, 1992, 4(4): 242-249)
[5] Rahimi S, Engelberg D, Marrow T. A new approach for DL-EPR testing of thermo-mechanically processed austenitic stainless steel[J]. Corros. Sci., 2011, 53(12): 4213-4222
[6] Chowdhury S, Singh R. The influence of recrystallized structure and texture on the sensitization behaviour of a stable austenitic stainless steel (AISI 316L) [J]. Scr. Mater., 2008, 58(12): 1102-1105
[7] Wu Y L, Murata T. Evaluation of degree of sensitization of stainless steels by means of EPR method [J]. J. Chin. Soc. Corros. Prot., 1985, 5(1): 34-48
(吴幼林, 阿部征三郎, 村田明美. 用EPR法评价奥氏体不锈钢的敏化程度——材质因素及敏化条件的影响 [J]. 中国腐蚀与防护学报, 1985, 5(1): 34-48)
[8] Rong F, Kang X F, Lang Y P. Senstization behavior of nitrogen containing austenitic stainless steel [J]. Iron Steel, 2005, 40(5): 62-64
(荣凡, 康喜范, 郎宇平. 含氮奥氏体不锈钢的敏化行为 [J]. 钢铁, 2005, 40(5): 62-64)
[9] Wu C J, Chen G L, Qiang W J. Metal Material [M]. Beijing: Metallurgical Industry Press, 2009:12-13
(吴承建, 陈国良, 强文江. 金属材料学 [M]. 北京: 冶金工业出版社, 2009: 12-13)
[10] Lee K M, Cho H S, Choi D C. Effect of isothermal treatment of saf 2205 duplex stainless steel on migration of δ/γ interface boundary and growth of austenite[J]. J. Alloys Compd., 1999, 285:156-158
[11] Raynor G V and Rivlin V G. Phase Equilibria in Iron Ternary Alloys. The Institute of Metals, (No.4), 1988
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] 周然, 张晓蕾, 李祥锋, 凌爱军, 杜建港. 海上压力容器腐蚀行为的风险与检验研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 592-598.
[5] 邓培昌, 钟杰, 王坤, 胡杰珍, 李子运, 岑楚欣, 沈小涵. 海洋工程装备高空腐蚀重要影响因素Cl-沉降速率研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 474-478.
[6] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[7] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[8] 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[9] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[10] 王海卫, 常森, 栾新刚, 宋雪梅, 王稹, 李彦樟, 陈建利, 张计荣, 韩明, 丘丹圭. 纳米Al2O3改性SiBCN陶瓷高温粘接剂的制备与性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[11] 白鹏凯, 许萍. 水处理领域中的绿色环保阻垢剂及其研究进展[J]. 中国腐蚀与防护学报, 2020, 40(2): 87-95.
[12] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[13] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[14] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[15] 冯亚丽,白子恒,陈利红,魏丹,张东玖,姚琼,吴俊升,董超芳,肖葵. Corten-A耐候钢在模拟污染海洋大气环境中的加速腐蚀相关性研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 519-526.