Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (3): 217-222    
  研究报告 本期目录 | 过刊浏览 |
溶解氢对316L不锈钢在模拟压水堆一回路水中氧化行为的影响
彭青姣,张志明,王俭秋,韩恩厚,柯伟
中国科学院金属研究所 金属腐蚀与防护国家重点实验室 辽宁省核材料安全与评价技术重点实验室 沈阳 110016
INFLUENCE OF DISSOLVED HYDROGEN ON OXIDATION OF STAINLESS STEEL 316L IN SIMULATED PWR PRIMARY WATER
PENG Qingjiao, ZHANG Zhiming,WANG Jianqiu, HAN En-Hou, KE Wei
Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, State Key Laboratory for Corrosion and Protection, Institute of Metal Research , Chinese Academy of Sciences, Shenyang 110016
全文: PDF(1279 KB)  
摘要: 采用扫描电镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和透射电镜(TEM)分析了不同溶解氢含量下, 316L不锈钢在325℃的模拟压水堆一回路水中形成的氧化膜的形貌、结构和成份。实验结果表明, 316L不锈钢在溶解氢含量为零的高温高压水中形成外层富铁,内层富铬的双层氧化膜。随着水中溶解氢含量的升高,氧化膜外层的大颗粒氧化物尺寸减小,排列更加致密。而氧化膜的物相组成变化不明显,均主要是由尖晶石结构氧化物构成。XPS分析表明,随着水中溶解氢含量的升高,氧化膜厚度逐渐增加,且氧化膜中Ni含量升高,Cr含量降低。
关键词 316L不锈钢高温高压水氧化膜溶解氢    
Abstract:Scanning electron microscope(SEM),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM) were used to analyze the morphology, structure and chemical composition of the oxide films formed on stainless steel(SS) 316L in the simulated pressurized water reactor (PWR) primary water at 325℃. The results showed that the oxide film formed on 316L SS in high-temperature and high-pressure solution without dissolved hydrogen had a double layer structure composed of iron-rich outer layer and chromium-rich inner layer. With increasing dissolved hydrogen, the outer big oxide particles became small and more compact, but all the oxide films were consisted of spinel oxide. XPS results indicated that, with increasing dissolved hydrogen, the thickness of the oxide film increased. In addition, the nickel content in the oxide film increased, whereas the chromium content decreased.
Key words316L stainless steel    high-temperature and high-pressure water    oxide film    dissolved hydrogen
收稿日期: 2011-04-28     
ZTFLH: 

TG172

 
基金资助:

国家重点基础研究发展计划项目(G2011CB610502)和国家自然科学基金项目(51025104)资助

通讯作者: 王俭秋     E-mail: wangjianqiu@imr.ac.cn
Corresponding author: WANG Jianqiu     E-mail: wangjianqiu@imr.ac.cn
作者简介: 彭青姣,女,1986年生,硕士生,研究方向为核电主管道材料的腐蚀

引用本文:

彭青姣,张志明,王俭秋,韩恩厚,柯伟. 溶解氢对316L不锈钢在模拟压水堆一回路水中氧化行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(3): 217-222.
PENG Jing-Jiao, YU Jian-Qiu. INFLUENCE OF DISSOLVED HYDROGEN ON OXIDATION OF STAINLESS STEEL 316L IN SIMULATED PWR PRIMARY WATER. J Chin Soc Corr Pro, 2012, 32(3): 217-222.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I3/217

[1] Burke M A. Materials selection and validation for light water reactor electricity generating capacity sustainability[A], 5th IMR Symposium on Materials Science and Engineering: Materials and Reliability in Nuclear Power Plants[C]. China, Shenyang: 2009

[2] Nakagawa T, Totsuka N, Terachi T, et al. Influence of dissolved hydrogen on oxide film and PWSCC of Alloy 600 in PWR primary water[J]. J. Nucl. Sci. Technol., 2003, 40(1): 39-43

[3] Terachi T, Fujii K, Arioka K. Microstructure characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at 320℃[J]. J. Nucl.Sci. Technol., 2003, 42(2): 225-232

[4] Li Y, Baba Y, Sekiguchi T. The oxidation behavior of Fe, Cr and Ni O-ion implanted SUS304 stainless steel by in situ SR-XPS I. Oxidation behaviors[J]. J. Chin. Soc. Corros. Prot., 2000, 20(6):321-330

    (李瑛, Baba Y, Sekiguchi T.304不锈钢氧离子溅射的同步辐射光电子能谱原位研究 I.钢中金属元素的氧化行为 [J]. 中国腐蚀与防护学报, 2000, 20(6):321-330)

[5] Li Y, Baba Y, Sekiguchi T. The oxidation behavior of Fe, Cr and Ni O-ion implanted SUS304 stainless steel by in situ SR-XPS II. Chemical state of oxygen[J]. J. Chin. Soc. Corros. Prot., 2000,20(6): 331-337

   (李瑛, Baba Y, Sekiguchi T.304不锈钢氧离子溅射的同步辐射光电子能谱原位研究 II. 氧元素的化学状态[J]. 中国腐蚀与防护学报, 2000, 20(6): 331-337)

[6] Wang M Q, Qian Y H, Qi H B, et al. Oxidation behavior of 304 stainless steel under simulated hot-rolling condition[J]. Corros. Sci. Prot. Technol., 2011, 23(1): 5-8

    (王妙全, 钱余海, 齐慧滨等. 模拟热轧工艺条件下304不锈钢的氧化行为[J].腐蚀科学与防护技术, 2011, 23(1): 5-8)

[7] Lu J S, Wang B F, Zhang J Y, et al. Corrosion of stainless steels and Ni-base alloy in supercritical water oxidation system[J]. Chin. J. Mater. Res., 2002, 16(1): 41-45

    (卢建树,王保峰, 张九渊等. 几种合金在超临界水氧化苯酚中的腐蚀[J].材料研究学报, 2002, 16(1): 41-45)

[8] Lu J S, Li X H, Zhang J Y, et al. Corrosion of 316 stainless steels and 825 nickel base alloy in medium of supercritical water for oxidizing chlorpyrifos[J]. Corros. Sci.Prot. Technol., 2002, 14(4): 187-190

    (卢建树, 李肖华,张九渊等. 316不锈钢和825镍基合金在超临界水氧化毒死蜱介质中的腐蚀[J].腐蚀科学与防护技术, 2002, 14(4): 187-190)

[9] Hou J. Effects of microstructure on stress corrosion cracking in Ni-based 690/600 Alloy[D].Shenyang: Institute of Metal Research, Chinese Academy of Science, 2010: 119

    (侯娟.690/600合金微观结构对应力腐蚀的影响[D]. 沈阳: 中国科学院金属研究所,2010: 119)

[10] Tostuka N, Szklarska-Smialowska Z. Hydrogen induced IGSCC of two unsensitized austenitic stainless steels in high-temperature water[J]. Corrosion, 1988, 44(2): 124-126

[11] Arioka K. Effect of temperature hydrogen and boric acid concentration on IGSCC susceptibility of annealed 316 stainless steel[A]. Proc. Int. Symp. Fontevraud 5[C]. 2002: 23-27

[12] Arioka K, Yamada T, Takumi T. Influence of boric acid, hydrogen concentration and grain boundary carbide on IGSCC behaviors of SUS 316 under PER primary water[A]. Proc. 11th Int. Conf. Environmental Degradation of Materials in Nuclear Systems [C].Stevenson, 2003: 10-14

[13] Arioka K, Yamada T. Intergranular stress corrosion cracking behavior of austenitic stainless steels in hydrogenated high-temperature water[J]. Corrosion, 2006, 62(1): 74-83

[14] Qiu Y B, Shoji T, Lu Z P. Effect of dissolved hydrogen on the electrochemical behaviour of alloy 600 in simulated PWR water at290℃[J]. Corros. Sci., 2011, 53: 1983-1989

[15] Hou J, Peng Q J, Kuniya J, et al. Effect of hydrogen in Inconel Alloy 600 on corrosion in high temperature oxygenated water[J]. Corros. Sci., 2010, 52: 1098-1101

[16] Terachi T, Totsuka N, Yamada T, et al. Influence of dissolved hydrogen on structure of oxide film on alloy 600 formed in primary water of pressurized water reactors[J]. J. Nucl. Sci.Technol., 2003, 40(7): 509-516

[17] Terachi T, Yamada T, Miyamoto T, et al. Corrosion behavior of stainless steels in simulated PWR primary water-Effect of chromium content in alloys and dissolved hydrogen [J]. J. Nucl.Sci. Technol., 2008, 45(10): 975-984

[18] Berge P, Ribon C, Paul P S. Effect of hydrogen on the corrosion of steels in high temperature water[J]. Corrosion, 1977,33(5): 173-178

[19] Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Appl. Surf.Sci., 2008, 254: 2441-2449

[20] Hemmi Y, Y, Ichikawa N. General corrosion of materials under simulated BWR primary water condition[J].J. Nucl. Sci.Technol., 1994, 31(5): 443-455

[21] Lister D H, Davidson R D, McAlpine E. The mechanism and kinetics of corrosion product release from stainless steel in lithiated high temperature water[J]. Corros. Sci., 1987,27(2): 113-140

[22] Cowan R L, Staehle R W. The thermodynamics and electrode kinetic behavior of nickel in acid solution in the temperature range 25℃ to 300℃[J]. J. Electrochem. Soc., 1971, 118(3):557-568
[1] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[2] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[3] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[4] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[5] 李兆登,崔振东,侯相钰,高丽丽,王维珍,尹建华. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[6] 郝利新, 贾瑞灵, 张慧霞, 张伟, 赵婷, 翟熙伟. 7A52铝合金双丝MIG焊接头的不均匀性对其表面微弧氧化膜腐蚀防护作用的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 219-225.
[7] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[8] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[9] 杜开发,王彬,甘复兴,汪的华. 铜锡合金阳极在熔融碳酸盐中氧化膜的形成及其防护性能[J]. 中国腐蚀与防护学报, 2017, 37(5): 421-427.
[10] 冯立, 张立功, 李思振, 郑大江, 林昌健, 董士刚. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.
[11] 周和荣,胡碧华,姚望,洪新培,宋述鹏. 铝合金阳极氧化层在江津污染大气环境中暴露腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 273-278.
[12] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[13] 王胜刚, 孙淼, 龙康. 紫外光电子能谱和X射线光电子能谱表征在金属材料腐蚀中的应用[J]. 中国腐蚀与防护学报, 2016, 36(4): 287-294.
[14] 刘静,李晓禄,朱崇伟,张涛,曾冠鑫,孟国哲,邵亚薇. 利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[15] 向超,王家贞,付华萌,韩恩厚,张海峰,王俭秋,张志明. 几种高熵合金在核电高温高压水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(2): 107-112.