|
|
溶解氢对316L不锈钢在模拟压水堆一回路水中氧化行为的影响 |
彭青姣,张志明,王俭秋,韩恩厚,柯伟 |
中国科学院金属研究所 金属腐蚀与防护国家重点实验室 辽宁省核材料安全与评价技术重点实验室 沈阳 110016 |
|
INFLUENCE OF DISSOLVED HYDROGEN ON OXIDATION OF STAINLESS STEEL 316L IN SIMULATED PWR PRIMARY WATER |
PENG Qingjiao, ZHANG Zhiming,WANG Jianqiu, HAN En-Hou, KE Wei |
Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, State Key Laboratory for Corrosion and Protection, Institute of Metal Research , Chinese Academy of Sciences, Shenyang 110016 |
引用本文:
彭青姣,张志明,王俭秋,韩恩厚,柯伟. 溶解氢对316L不锈钢在模拟压水堆一回路水中氧化行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(3): 217-222.
PENG Jing-Jiao,
YU Jian-Qiu.
INFLUENCE OF DISSOLVED HYDROGEN ON OXIDATION OF STAINLESS STEEL 316L IN SIMULATED PWR PRIMARY WATER. J Chin Soc Corr Pro, 2012, 32(3): 217-222.
链接本文:
https://www.jcscp.org/CN/
或
https://www.jcscp.org/CN/Y2012/V32/I3/217
|
[1] Burke M A. Materials selection and validation for light water reactor electricity generating capacity sustainability[A], 5th IMR Symposium on Materials Science and Engineering: Materials and Reliability in Nuclear Power Plants[C]. China, Shenyang: 2009[2] Nakagawa T, Totsuka N, Terachi T, et al. Influence of dissolved hydrogen on oxide film and PWSCC of Alloy 600 in PWR primary water[J]. J. Nucl. Sci. Technol., 2003, 40(1): 39-43[3] Terachi T, Fujii K, Arioka K. Microstructure characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at 320℃[J]. J. Nucl.Sci. Technol., 2003, 42(2): 225-232[4] Li Y, Baba Y, Sekiguchi T. The oxidation behavior of Fe, Cr and Ni O-ion implanted SUS304 stainless steel by in situ SR-XPS I. Oxidation behaviors[J]. J. Chin. Soc. Corros. Prot., 2000, 20(6):321-330 (李瑛, Baba Y, Sekiguchi T.304不锈钢氧离子溅射的同步辐射光电子能谱原位研究 I.钢中金属元素的氧化行为 [J]. 中国腐蚀与防护学报, 2000, 20(6):321-330)[5] Li Y, Baba Y, Sekiguchi T. The oxidation behavior of Fe, Cr and Ni O-ion implanted SUS304 stainless steel by in situ SR-XPS II. Chemical state of oxygen[J]. J. Chin. Soc. Corros. Prot., 2000,20(6): 331-337 (李瑛, Baba Y, Sekiguchi T.304不锈钢氧离子溅射的同步辐射光电子能谱原位研究 II. 氧元素的化学状态[J]. 中国腐蚀与防护学报, 2000, 20(6): 331-337)[6] Wang M Q, Qian Y H, Qi H B, et al. Oxidation behavior of 304 stainless steel under simulated hot-rolling condition[J]. Corros. Sci. Prot. Technol., 2011, 23(1): 5-8 (王妙全, 钱余海, 齐慧滨等. 模拟热轧工艺条件下304不锈钢的氧化行为[J].腐蚀科学与防护技术, 2011, 23(1): 5-8)[7] Lu J S, Wang B F, Zhang J Y, et al. Corrosion of stainless steels and Ni-base alloy in supercritical water oxidation system[J]. Chin. J. Mater. Res., 2002, 16(1): 41-45 (卢建树,王保峰, 张九渊等. 几种合金在超临界水氧化苯酚中的腐蚀[J].材料研究学报, 2002, 16(1): 41-45)[8] Lu J S, Li X H, Zhang J Y, et al. Corrosion of 316 stainless steels and 825 nickel base alloy in medium of supercritical water for oxidizing chlorpyrifos[J]. Corros. Sci.Prot. Technol., 2002, 14(4): 187-190 (卢建树, 李肖华,张九渊等. 316不锈钢和825镍基合金在超临界水氧化毒死蜱介质中的腐蚀[J].腐蚀科学与防护技术, 2002, 14(4): 187-190)[9] Hou J. Effects of microstructure on stress corrosion cracking in Ni-based 690/600 Alloy[D].Shenyang: Institute of Metal Research, Chinese Academy of Science, 2010: 119 (侯娟.690/600合金微观结构对应力腐蚀的影响[D]. 沈阳: 中国科学院金属研究所,2010: 119)[10] Tostuka N, Szklarska-Smialowska Z. Hydrogen induced IGSCC of two unsensitized austenitic stainless steels in high-temperature water[J]. Corrosion, 1988, 44(2): 124-126[11] Arioka K. Effect of temperature hydrogen and boric acid concentration on IGSCC susceptibility of annealed 316 stainless steel[A]. Proc. Int. Symp. Fontevraud 5[C]. 2002: 23-27[12] Arioka K, Yamada T, Takumi T. Influence of boric acid, hydrogen concentration and grain boundary carbide on IGSCC behaviors of SUS 316 under PER primary water[A]. Proc. 11th Int. Conf. Environmental Degradation of Materials in Nuclear Systems [C].Stevenson, 2003: 10-14[13] Arioka K, Yamada T. Intergranular stress corrosion cracking behavior of austenitic stainless steels in hydrogenated high-temperature water[J]. Corrosion, 2006, 62(1): 74-83[14] Qiu Y B, Shoji T, Lu Z P. Effect of dissolved hydrogen on the electrochemical behaviour of alloy 600 in simulated PWR water at290℃[J]. Corros. Sci., 2011, 53: 1983-1989[15] Hou J, Peng Q J, Kuniya J, et al. Effect of hydrogen in Inconel Alloy 600 on corrosion in high temperature oxygenated water[J]. Corros. Sci., 2010, 52: 1098-1101[16] Terachi T, Totsuka N, Yamada T, et al. Influence of dissolved hydrogen on structure of oxide film on alloy 600 formed in primary water of pressurized water reactors[J]. J. Nucl. Sci.Technol., 2003, 40(7): 509-516[17] Terachi T, Yamada T, Miyamoto T, et al. Corrosion behavior of stainless steels in simulated PWR primary water-Effect of chromium content in alloys and dissolved hydrogen [J]. J. Nucl.Sci. Technol., 2008, 45(10): 975-984[18] Berge P, Ribon C, Paul P S. Effect of hydrogen on the corrosion of steels in high temperature water[J]. Corrosion, 1977,33(5): 173-178[19] Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Appl. Surf.Sci., 2008, 254: 2441-2449[20] Hemmi Y, Y, Ichikawa N. General corrosion of materials under simulated BWR primary water condition[J].J. Nucl. Sci.Technol., 1994, 31(5): 443-455[21] Lister D H, Davidson R D, McAlpine E. The mechanism and kinetics of corrosion product release from stainless steel in lithiated high temperature water[J]. Corros. Sci., 1987,27(2): 113-140[22] Cowan R L, Staehle R W. The thermodynamics and electrode kinetic behavior of nickel in acid solution in the temperature range 25℃ to 300℃[J]. J. Electrochem. Soc., 1971, 118(3):557-568 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|