Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (3): 210-216    
  研究报告 本期目录 | 过刊浏览 |
激光表面处理17-4PH不锈钢的电化学腐蚀行为
李众1,2,张峻巍1,孟国哲2,孙飞龙2,邵亚薇2,张涛2
1. 辽宁科技大学材料与冶金学院 鞍山 114051
2. 哈尔滨工程大学材料与化工学院 哈尔滨 150001
ELECTROCHEMICAL CORROSION BEHAVIOR OF 17-4PH STAINLESS STEEL WITH LASER SURFACE MELTING TREATMENT
LI Zhong1,2, ZHANG Junwei1, MENG Guozhe2, SUN Feilong2, SHAO Yawei2, ZHANG Tao2
1. School of Material and Metallurgy, University of Science and Technology Liaoning, Anshan 114051
2. School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001
全文: PDF(2711 KB)  
摘要: 利用动电位极化、电化学阻抗等电化学测试技术,结合金相观察和扫描电镜(SEM)观察,系统研究了特定激光功率(1600 W)条件下激光表面强化处理工艺参数对17-4PH不锈钢在3.5% NaCl溶液中腐蚀行为的影响。结果表明:采取表面使用吸光剂X、激光扫速为6 mm/s的工艺参数处理的17-4PH不锈钢试样的耐腐蚀性能最佳。同时表明只有当吸光剂和扫描速度达到良好配合时,才能获得较为均匀的组织,从而显著提高激光表面硬化层的耐腐蚀性能。当吸光剂与扫描速度不匹配时,激光表面处理后,会产生不均匀的表面组织,材料耐蚀性能会严重下降,在腐蚀环境中使用时,易发生严重的点蚀。
关键词 17-4PH不锈钢激光表面强化电化学阻抗    
Abstract:The effects of laser parameters at a constant laser power (1600W) on the corrosion behavior of 17-4PH stainless steel were investigated in 3.5% NaCl solution by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) technique, combined with optical microscopy and scanning electron microscopy (SEM) observation. The results showed that sample A, which was treated by laser surface melting process with light-absorption X and scanning speed of 6 mm/s, possessed the highest corrosion resistance. The results also demonstrated that the homogeneous microstructure was obtained only when the light-absorption and the scanning speed matched well (such as the light-absorption X and scanning speed 6 mm/s), leading the enhancement of the corrosion resistance; otherwise the heterogeneous would be obtained (such as the light-alsorlant Y and scanning speed 6 mm/s), leading to the degradation of the corrosion resistance and the material would suffer serious pitting corrosion when it was used in the corrosive environment.
Key words17-4PH stainless steel    laser surface treatment    EIS
收稿日期: 2011-04-08     
ZTFLH: 

TG172

 
基金资助:

国家自然科学基金项目(50971050)资助

通讯作者: 孟国哲      E-mail: mengguozhe@hrbeu.edu.cn
Corresponding author: MENG Guozhe     E-mail: mengguozhe@hrbeu.edu.cn
作者简介: 李众,女,1988年生,研究方向为腐蚀防护

引用本文:

李众,张峻巍,孟国哲,孙飞龙,邵亚薇,张涛. 激光表面处理17-4PH不锈钢的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2012, 32(3): 210-216.
LI Yin. ELECTROCHEMICAL CORROSION BEHAVIOR OF 17-4PH STAINLESS STEEL WITH LASER SURFACE MELTING TREATMENT. J Chin Soc Corr Pro, 2012, 32(3): 210-216.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I3/210

[1] Ho J S, Young T Y. Microstructural and hardness investigation of hot-work tool steels by laser surface treatment[J].J. Mater. Process. Technol., 2008, 201(1-3): 342-347
[2] Iordanova I, Antonov V. Surface oxidation of low carbon steel during laser treatment, its dependence on the initial microstructure and influence on the laser energy absorption[J]. Thin Solid Films, 2008, 516(21): 7475-7481
[3] Verezub O, Kalazi Z, Buza G, et al. In-situ synthesis of a carbide reinforced steel matrix surface nanocomposite by laser melt injection technology and subsequent heat treatment[J]. Surf.Coat. Technol., 2009, 203(20-21):3049-3057
[4] Wang J. Study on the Properties of a 17-4PH Stainless Steel Used in a Nuclear Reactor [D]. Chengdu: Sichuan University,2007
    (王均. 核反应堆用17-4PH不锈钢的性能研究[D], 成都:四川大学, 2007)
[5] Huang G L. Study on the structure and performance of 17-4PH stainless steel [J]. Iron Steel, 1998, 33(4): 44-46
    (黄根良. 17-4PH沉淀硬化不锈钢的组织和性能研究[J]. 钢铁, 1998, 33(4):44-46)
[6] Kochmanski P, Nowacki J.Activated gas nitriding of 17-4PH stainless steel [J].Surf. Coat. Technol., 2006, 200(22-23):6558-6562
[7] Sun Y, Bell T.Low temperature plasma nitriding characteristics of precipitation hardening stainless steel[J].Surf. Eng.,2003, 19(5): 331-336
[8] Li G J, Wang J, Li C, Peng Q, et al.Microstructure and dry-sliding wear properties of DC plasma nitrided 17-4PH stainless steel [J]. Nucl. Instrum. Methods Phys. Res., 2008, 266B(9):1964-1970
[9] Qi F, Leng Y X, Huang N, et al.Surface modification of 17-4PH stainless steel by DC plasma nitriding and titanium nitride film duplex treatment [J]. Nucl. Instrum. Methods Phys. Res., Sect., 2007, 257(1-2)B: 416-419
[10] Esfandiari M, Dong H.The corrosion and corrosion-wear behaviour of plasma nitrided 17-4PH precipitation hardening stainless steel [J].Surf. Coat. Technol., 2007, 202(3): 466-478
[11] Zhang Y K, Zhou J Z, Ye Y X. Laser Processing Technique [M]. Beijing: Chemistry Industry Press, 2004
     (张永康,周建忠, 叶云霞. 激光加工技术[M]. 北京: 化学工业出版社, 2004)
[12] Si S H, Yuan X M, Xu K, et al. Effect of laser power on microstructures and wear properties of  WCp/Ni metal ceramics coating [J]. J. Chin. Soc. Corros. Prot., 2004, 24(3): 183-187
     (斯松华, 袁晓敏, 徐锟等.激光功率对激光熔覆WCP/Ni基金属陶瓷涂层的组织与磨损性能的影响[J].中国腐蚀与防护学报, 2004, 24(3): 183-187)
[13] Yao J H, Wang L, Zhang Q L, et al.Surface laser alloying of 17-4PH stainless steel steam turbine blades [J]. Opt. Laser Technol., 2008, 40(6): 838-843
[14] Yao J H, Lai H M. The technology of laser strengthening on turbine last stage blade [J]. Thermal Turbine, 2006, 35(1): 58-61
     (姚建华, 赖海明. 汽轮机末级叶片的激光强化技术[J]. 热力透平. 2006,35(1): 58-61)
[15] Davenport A J, Tareelap N, Padovani C, et al. Corrosion Protection of Aerospace Aluminum Alloys with Laser Surface Melting [A]. 208th Meeting of The Electrochemical Society [C]. Los Angeles:2005: 551
[16] Galun R, Weisheit Z, Mordike B L. Improving the surface properties of magnesium by laser alloying [J]. Corros. Rev., 1998,16(1-2): 53-74
[17] Mordike B L, Kainer K U. Magnesium alloys and their applications [M]. Werkstoff information-gesellschaft mbh: Wiley-VCH,1998
[18] Subramanian R, Sircar S, Mazumder J. Laser cladding of zirconium on magnesium for improved corrosion properties [J]. J.Mater. Sci., 1991, 26(4): 951-956
[19] Mondal A K, Kumar S, Blawert C, et al. Laser surface cladding of Fe-B-C, Fe-B-Si and Fe-BC-Si-Al-C on plain carbon steel [J]. Surf. Coat. Technol., 2008, 202 (14): 3187-3198
[20] Kwok C T, Lo K H, Cheng F T, et al. Effect of processing conditions on the corrosion performance of laser surface-melted AISI 440C martensitic stainless steel [J]. Surf. Coat. Technol., 2003,166: 221-230
[21] Meng G Z, Li Y, Wang F H. The corrosion behavior of nanocrystalline Fe-10Cr [J]. Electrochim. Acta, 2006, 51: 4277-4284
[22] Meng G Z, Li Y, Wang F H. Corrosion behavior of Fe-10Cr nanocrystalline coatings. (I) The passive behavior of Fe-10Cr nanocrystalline coatings in acidic solution [J]. J. Chin. Soc.Corros. Prot., 2007, 27(1): 35-42
     (孟国哲, 李瑛, 王福会.纳米Fe-10Cr涂层电化学腐蚀行为影响研究. I钝化性能[J].中国腐蚀与防护学报, 2007, 27(1): 35-42)
[23] Meng G Z, Li Y, Wang F H. Corrosion behavior of Fe-10Cr nanocrystalline coatings. (II) Corrosion behavior of Fe-10Cr nanocrystalline coatings in acidic solution with Cl- [J]. J.Chin. Soc. Corros. Prot., 2007, 27(1): 43-47
     (孟国哲, 李瑛,王福会. 纳米Fe-10Cr涂层电化学腐蚀行为影响研究. II点蚀性能[J].中国腐蚀与防护学报, 2007, 27(1): 43-47)
[24] Cao C N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state-I. One state variable besides electrode potential [J],Electrochim. Acta, 1990, 35: 831-836
[25] Cao C N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state-II. Two state variables besides electrode potential [J], Electrochim. Acta, 1990, 35: 837-844
[1] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[2] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[3] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[4] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[5] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[6] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[7] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[8] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[9] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[10] 姚望, 周和荣, 肖葵, 刘鹏洋, 但佳永, 吴润. 中性盐雾环境中DC06超深冲钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 241-247.
[11] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[12] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[13] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[14] 崔晓飞, 谭晓明, 王德, 钱昂. 铝合金表面聚氨酯涂层在加速实验条件下的老化机制及规律研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[15] 王佳, 贾梦洋, 杨朝晖, 韩冰. 腐蚀电化学阻抗谱等效电路解析完备性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.