Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (2): 97-100    
  研究报告 本期目录 | 过刊浏览 |
库尔勒土壤模拟溶液的模拟性和加速性研究
梁平1,杜翠薇2,李晓刚3
1. 辽宁石油化工大学机械工程学院 抚顺 113001
2. 北京科技大学材料科学与工程学院 北京 100083
SIMULATING AND ACCELERATING PROPERTIES OF KU'ERLE SOIL SIMULATED SOLUTION
LIANG Ping1, DU Cuiwei2, LI Xiaogang2
1. School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001
2. Materials Science and Engineering School, University of Science and Technology Beijing, Beijing 100083
全文: PDF(662 KB)  
摘要: 通过实验室埋片、浸泡、动电位极化和电化学阻抗等方法对X80钢在库尔勒水饱和土壤和模拟溶液的腐蚀行为进行了研究。结果表明,X80钢在模拟溶液中的腐蚀速率约是水饱和土壤中的4倍,这与动电位极化结果相似。同时,X80钢在模拟溶液和土壤中腐蚀的阳极反应和阴极反应都为活化控制,腐蚀过程的变化趋势一致,表明模拟溶液能够较好地反映出库尔勒土壤的腐蚀特性,并具有加速性。
关键词 库尔勒土壤X80管线钢模拟溶液模拟性加速性    
Abstract:The corrosion behaviors of X80 steel in Ku'erle soil with saturated water and the simulated solution were investigated by immersion, potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The results showed that the corrosion rate in the solution was about fourfold for that in the soil, which was consistent with that of potentiodynamic polarization curve. Moreover, the corrosion behaviors were similar for X80 steel in Ku'erle soil and the simulated solution, and the anodic and cathodic reactions were both controlled by active polarization, and the corrosion processes in both system were almost the same. These results indicated that the simulated solution could exhibit the corrosion character of Ku'erle soil. Moreover, the solution had an obvious accelerating property.
Key wordsKu'erle soil    X80 pipeline steel    simulated solution    simulating properties    accelerating properties
收稿日期: 2010-02-10     
ZTFLH: 

TG174.2

 
基金资助:

国家十一五科技支撑计划项目(2006BAK02B01)资助

通讯作者: 梁平     E-mail: liangping770101@163.com
Corresponding author: LIANG Ping     E-mail: liangping770101@163.com
作者简介: 梁平,男,1974 年生,副教授,研究方向为材料的腐蚀与防护技术

引用本文:

梁平,杜翠薇,李晓刚. 库尔勒土壤模拟溶液的模拟性和加速性研究[J]. 中国腐蚀与防护学报, 2011, 31(2): 97-100.
LIANG Beng. SIMULATING AND ACCELERATING PROPERTIES OF KU'ERLE SOIL SIMULATED SOLUTION. J Chin Soc Corr Pro, 2011, 31(2): 97-100.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I2/97

[1] Bott I S, de Souza L F G, Teixeira J C G. High-strength steel development for pipelines: A brazilian perspective [J]. Metall. Mater. Trans., 2005, 36A(2): 443-454

[2] Chen X, Du C W, Li X G. Influences of soil water content on corrosion behavior of X70 steel in Yingtan acidic soil [J]. J. Petrochem. Univ., 2007, 20(4): 55-58

    (陈旭, 杜翠薇, 李晓刚. 含水率对X70刚在鹰潭酸性土壤中腐蚀行为的影响 [J]. 石油化工高等学校学报, 2007, 20(4): 55-58)

[3] Liang P, Du C W, Li X G, et al. Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution [J]. Mater. Des., 2009,30(5): 1712-1717

[4] Niu L, Cheng Y F. Corrosion behavior of X-70 pipeline steel in near-neutral pH solution [J]. Appl. Surf. Sci.,2007, 253(21): 8626-8631

[5] Li X G, Du C W, Dong C F. Corrosion Behavior and Test of X70 Pipeline Steel [M]. Beijing: Science Press, 2006

     (李晓刚, 杜翠薇, 董超芳. X70钢的腐蚀行为与试验研究 [M]. 北京:科学出版社, 2006)

[6] Wei B M. Corrosion Theory and Application for Metal [M]. Beijing: Chemical Industry Press, 2001

     (魏宝明. 金属腐蚀理论及应用 [M]. 北京: 化学工业出版社, 2001)

[7] Li M C, Lin H C, Cao C N. Corrosion behavior of carbon steel in neutral soil [J]. J. Mater. Sci. Eng., 2000, 18(4): 57-59

     (李谋成, 林海潮, 曹楚南. 碳钢在中性土壤中的腐蚀行为研究 [J]. 材料科学与工程, 2000, 18(4): 57-59)

[8] Glass G K, Hassanein A M, Buenfeld N R. Obtaining impedance information on the steel-concrete interface [J].Corrosion, 1998, 54(11): 887-897

[9] Hamadou L, Kadri A, Benbrahim N. Characterisation of passive film formed on low carbon steel in borate buffer solution by electrochemical impedance spectroscopy [J]. Appl. Surf. Sci., 2005, 252(5): 1510-1519\par}
 
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[3] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[4] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[5] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[6] 任继栋,高荣杰,张宇,刘勇,丁甜. 混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 233-240.
[7] 张康南,吴明,谢飞,王丹,伞宇曦,江峰. 磁场对X80管线钢在沈阳草甸土中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 148-154.
[8] 张弟,梁平,张云霞,史艳华,秦华. 库尔勒土壤模拟溶液中形成的腐蚀产物膜对X80钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
[9] 张宁,孙虎元,孙立娟,刘栓. X80管线钢在滨海滩涂土壤模拟液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(4): 339-344.
[10] 刘淑云, 王帅星, 杜楠, 王力强, 肖金华. X80管线钢在不同pH值红壤模拟溶液中的腐蚀电化学行为[J]. 中国腐蚀与防护学报, 2015, 35(1): 21-26.
[11] 张秀云, 石志强, 王彦芳, 刘明星, 杨升升. X100管线钢在盐渍土壤模拟溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(1): 33-37.
[12] 吴堂清, 丁万成, 曾德春, 徐长峰, 闫茂成, 许进, 于长坤, 孙成. 酸性土壤浸出液中X80钢微生物腐蚀研究: (I) 电化学分析[J]. 中国腐蚀与防护学报, 2014, 34(4): 346-352.
[13] 梅华生, 王长朋, 张帷, 周漪, 杨王玲. 电化学充氢对X80管线钢在鹰潭土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 388-394.
[14] 袁玮, 黄峰, 胡骞, 刘静, 侯震宇. 外加拉应力对X80管线钢点蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(4): 277-282.
[15] 范林,李晓刚,杜翠薇,刘智勇. X80管线钢钝化膜在各种高浓度NaHCO3溶液中的电化学行为[J]. 中国腐蚀与防护学报, 2012, 32(4): 322-326.