Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (4): 346-352    DOI: 10.11902/1005.4537.2014.044
  论文 本期目录 | 过刊浏览 |
酸性土壤浸出液中X80钢微生物腐蚀研究: (I) 电化学分析
吴堂清1, 丁万成2, 曾德春3, 徐长峰3, 闫茂成1, 许进1, 于长坤1, 孙成1
1. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016; 2. 中石油新疆油田分公司 克拉玛依 834000; 3. 新疆油田油气储运分公司 克拉玛依 834002
Microbiologically Induced Corrosion of X80 Pipeline Steel in an Acid Soil Solution: (I) Electrochemical Analysis
WU Tangqing1, DING Wancheng2, ZENG Dechun3, XU Changfeng3, YAN Maocheng1, XU Jin1, YU Changkun1, SUN Cheng1
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; 2. Xinjiang Oilfield Branch, China National Petroleum Corporation, Karamay 834000, China; 3. Oil-Gas Storage and Transportation Company, Xinjiang Oilfield Branch, Karamay 834002, China
全文: PDF(762 KB)   HTML
摘要: 利用微生物和电化学方法研究了X80管线钢在一种酸性土壤浸出液中的硫酸盐还原菌 (SRB) 腐蚀电化学特征。结果表明,刚接种到酸性土壤浸出液中的SRB需要重新适应环境,该过程导致细菌数量大幅降低;接菌土壤浸出液中管线钢的开路电位低于灭菌土壤浸出液中的;实验前期活性生物膜对管线钢腐蚀起抑制作用,后期微生物代谢产物促进管线钢的腐蚀;SRB活动改变了金属/溶液的电介质性质,是实验后期促进管线钢腐蚀的重要原因。
关键词 硫酸盐还原菌X80管线钢酸性土壤浸出液电化学阻抗谱    
Abstract:Electrochemical characteristics of sulphate-reducing bacteria (SRB) induced corrosion of X80 pipeline steel were studied in an acid soil solution by mean of microbiological test methods and electrochemical techniques. The results showed that there exist a period for the newly-inoculated bacteria to be acclimatized to the new environment, during which death of large quantity of bacteria did occur; the open circuit potential of the steel is always lower in the inoculated soil solution than that in the sterile environment; SRB inhibits the corrosion process of the steel in the early stage and accelerates the corrosion process in the later stage during the experiment; while the activity of SRB alters the dielectric of the metal/solution interface, which is responsible for the increase of the corrosion rate of the pipeline steel in the later stage of the experiment.
Key wordssulphate-reducing bacteria    X80 pipeline steel    acid soil solution    electrochemical impedance spectroscopy
收稿日期: 2014-04-10     
ZTFLH:  TG172.4  
基金资助:国家自然科学基金项目(50971128和51131001)及国家科技基础条件平台建设项目(2005DKA10400CT-2-02)资助
通讯作者: 通讯作者:孙成,E-mail:chengsun@imr.ac.cn     E-mail: chengsun@imr.ac.cn
作者简介: 吴堂清,男,1987年生,博士生,研究方向为微生物作用下管线钢环境致裂行为

引用本文:

吴堂清, 丁万成, 曾德春, 徐长峰, 闫茂成, 许进, 于长坤, 孙成. 酸性土壤浸出液中X80钢微生物腐蚀研究: (I) 电化学分析[J]. 中国腐蚀与防护学报, 2014, 34(4): 346-352.
WU Tangqing, DING Wancheng, ZENG Dechun, XU Changfeng, YAN Maocheng, XU Jin, YU Changkun, SUN Cheng. Microbiologically Induced Corrosion of X80 Pipeline Steel in an Acid Soil Solution: (I) Electrochemical Analysis. Journal of Chinese Society for Corrosion and protection, 2014, 34(4): 346-352.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.044      或      https://www.jcscp.org/CN/Y2014/V34/I4/346

[1] Jin T Y, Liu Z Y, Cheng Y F. Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel [J]. Int. J. Hydrogen Energy., 2010, 35(15): 8014-8021
[2] Wang W. Study on Microstructure and Strengthening&Toughening Mechanism of High Performance Pipeline Steels [D]. Beijing: Graduate School of Chinese Academy of Sciences, 2009 (王伟. 高性能管线钢的组织及强韧化机理研究 [D]. 北京: 中国科学院研究生院, 2009)
[3] Beech I B, Gaylarde C C. Recent advances in the study of biocorrosion [J]. Rev. Microbiol., 1999, 30(3): 177-190
[4] Duan D X, Chen X G, Lin C G. 907A steel corrosion in artificial sulfate reducing bacteria biofilm [J]. J. Chin. Soc. Corros. Prot., 2011, 31(6): 453-456 (段东霞, 陈西广, 蔺存国. 硫酸盐还原菌模拟生物膜对907A钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2011, 31(6): 453-456)
[5] Little B J, Mansfeld F B, Arps P J, et al. In: Bard A J, Stratmam M, Frankel G S (Eds.). Encyclopedia of Electrochemistry [M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2007: 662-685
[6] Yang J X, Zhao P, Sun C, et al. Influence of sulphate reducing bacteria on crevice corrosion behavior of Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2012, 32(1): 54-58 (杨佳星, 赵平, 孙成等. 硫酸盐还原菌对Q235钢缝隙腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2012, 32(1): 54-58)
[7] Liu H F, Liu T. Groth characteristics of thermophile sulfate-reducing bacteria and its effect on carbon steel [J]. J. Chin. Soc. Corros. Prot., 2009, 29(2): 93-98 (刘宏芳, 刘涛. 嗜热硫酸盐还原菌生长特征及其对碳钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2009, 29(2): 93-98)
[8] Borenstein S W. Microbiologically influenced corrosion of austenitic stainless steel weldments [J]. Mater. Perform., 1991, 30(1): 52-54
[9] Javaherdashti R. A review of some characteristics of MIC caused by sulphate-reducing bacteria: past, present and future [J]. Anti-Corros. Method. M., 1999, 46(3): 173-180
[10] Li X M, Jin Z, Liu W Z, et al. Effects of urea on corrosion behavior of Q235 steel in soil [J]. J. Chin. Soc. Corros. Prot., 2013, 33(3): 216-220 (李喜明, 金哲, 刘五铸等. 尿素对土壤中Q235钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2013, 33(3): 216-220)
[11] Li X M, Zhang C Y, Zhu H, et al. Effect of erea on microbial corrosion behavior of Q235 steel in soil [J]. J. Chin. Soc. Corros. Prot., 2012, 32(5): 397-402 (李喜明, 张春颜, 朱辉等. 土壤中残余尿素对Q235钢微生物腐蚀的影响 [J]. 中国腐蚀与防护学报, 2012, 32(5): 397-402)
[12] AlAbbas F M, Williamson C, Bhola S M, et al. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high- strength steel (API-5L X80) [J]. Int. Biodeterior. Biodegrad., 2013,
[13] von Wolzogen Kuhr C A H. Unity of Anaerobic and Aerobic Iron Corrosion Process in the Soil [J]. Corrosion, 1961, 17(6): 293t-299t
[14] King R A, Miller J D A. Corrosion by sulphate-reducing bacteria [J]. Nature, 1971, 233: 491-492
[15] Iverson W P. Corrosion of iron and formation of iron phosphide by desulfovibrio desulfuricans [J]. Nature, 1968, 217: 1265-1268
[16] Duan J, Wu S, Zhang X, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J]. Electrochim. Acta., 2008, 54(1): 22-28
[17] Sun C, Xu J, Wang F. Interaction of Sulfate-Reducing Bacteria and Carbon Steel Q235 in Biofilm [J]. Ind. Eng. Chem. Res., 2011, 50: 12797-12806
[18] Cheng S, Tian J, Chen S, et al. Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) Corrosion behavior [J]. Mater. Sci. Eng., 2009, C29(3): 751-755
[19] Dunne W M. Bacterial adhesion: Seen any good biofilms Lately? [J]. Clin. Microbiol. Rev., 2002, 15(2): 155-166
[20] Zuo R, Kus E, Mansfeld F, et al. The importance of live biofilms in corrosion protection [J]. Corros. Sci., 2005, 47(2): 279-287
[21] Werner S E, Johnson C A, Laycock N J, et al. Pitting of type 304 stainless steel in the presence of a biofilm containing sulphate reducing bacteria [J]. Corros. Sci., 1998, 40(2/3): 465-480
[22] Gonzalez J E G, Santana F J H, Mirza-Rosca J C. Effect of bacterial biofilm on 316 SS corrosion in natural seawater by EIS [J]. Corros. Sci., 1998, 40(12): 2141-2154
[23] Yu L, Duan J, Du X, et al. Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry [J]. Electrochem. Commun.,
[24] Cao C N. Principles of Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 2008 (曹楚南. 腐蚀电化学 [M]. 北京: 化学工业出版社, 2008)
[25] Wu T Q,Yang P, Zhang M D, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (II) corrosion morphology and corrosion product analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 353-358 (吴堂清, 杨圃, 张明德等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (II) 腐蚀形貌和产物分析 [J]. 中国腐蚀与防护学报, 2014, 34: 353-358)
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[6] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[7] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[8] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[9] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[10] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[11] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[12] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[13] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[14] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[15] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.