|
|
酸性土壤浸出液中X80钢微生物腐蚀研究: (I) 电化学分析 |
吴堂清1, 丁万成2, 曾德春3, 徐长峰3, 闫茂成1, 许进1, 于长坤1, 孙成1 |
1. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016; 2. 中石油新疆油田分公司 克拉玛依 834000; 3. 新疆油田油气储运分公司 克拉玛依 834002 |
|
Microbiologically Induced Corrosion of X80 Pipeline Steel in an Acid Soil Solution: (I) Electrochemical Analysis |
WU Tangqing1, DING Wancheng2, ZENG Dechun3, XU Changfeng3, YAN Maocheng1, XU Jin1, YU Changkun1, SUN Cheng1 |
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; 2. Xinjiang Oilfield Branch, China National Petroleum Corporation, Karamay 834000, China; 3. Oil-Gas Storage and Transportation Company, Xinjiang Oilfield Branch, Karamay 834002, China |
引用本文:
吴堂清, 丁万成, 曾德春, 徐长峰, 闫茂成, 许进, 于长坤, 孙成. 酸性土壤浸出液中X80钢微生物腐蚀研究: (I) 电化学分析[J]. 中国腐蚀与防护学报, 2014, 34(4): 346-352.
WU Tangqing,
DING Wancheng,
ZENG Dechun,
XU Changfeng,
YAN Maocheng,
XU Jin,
YU Changkun,
SUN Cheng.
Microbiologically Induced Corrosion of X80 Pipeline Steel in an Acid Soil Solution: (I) Electrochemical Analysis. Journal of Chinese Society for Corrosion and protection, 2014, 34(4): 346-352.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2014.044
或
https://www.jcscp.org/CN/Y2014/V34/I4/346
|
[1] Jin T Y, Liu Z Y, Cheng Y F. Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel [J]. Int. J. Hydrogen Energy., 2010, 35(15): 8014-8021 [2] Wang W. Study on Microstructure and Strengthening&Toughening Mechanism of High Performance Pipeline Steels [D]. Beijing: Graduate School of Chinese Academy of Sciences, 2009 (王伟. 高性能管线钢的组织及强韧化机理研究 [D]. 北京: 中国科学院研究生院, 2009) [3] Beech I B, Gaylarde C C. Recent advances in the study of biocorrosion [J]. Rev. Microbiol., 1999, 30(3): 177-190 [4] Duan D X, Chen X G, Lin C G. 907A steel corrosion in artificial sulfate reducing bacteria biofilm [J]. J. Chin. Soc. Corros. Prot., 2011, 31(6): 453-456 (段东霞, 陈西广, 蔺存国. 硫酸盐还原菌模拟生物膜对907A钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2011, 31(6): 453-456) [5] Little B J, Mansfeld F B, Arps P J, et al. In: Bard A J, Stratmam M, Frankel G S (Eds.). Encyclopedia of Electrochemistry [M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2007: 662-685 [6] Yang J X, Zhao P, Sun C, et al. Influence of sulphate reducing bacteria on crevice corrosion behavior of Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2012, 32(1): 54-58 (杨佳星, 赵平, 孙成等. 硫酸盐还原菌对Q235钢缝隙腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2012, 32(1): 54-58) [7] Liu H F, Liu T. Groth characteristics of thermophile sulfate-reducing bacteria and its effect on carbon steel [J]. J. Chin. Soc. Corros. Prot., 2009, 29(2): 93-98 (刘宏芳, 刘涛. 嗜热硫酸盐还原菌生长特征及其对碳钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2009, 29(2): 93-98) [8] Borenstein S W. Microbiologically influenced corrosion of austenitic stainless steel weldments [J]. Mater. Perform., 1991, 30(1): 52-54 [9] Javaherdashti R. A review of some characteristics of MIC caused by sulphate-reducing bacteria: past, present and future [J]. Anti-Corros. Method. M., 1999, 46(3): 173-180 [10] Li X M, Jin Z, Liu W Z, et al. Effects of urea on corrosion behavior of Q235 steel in soil [J]. J. Chin. Soc. Corros. Prot., 2013, 33(3): 216-220 (李喜明, 金哲, 刘五铸等. 尿素对土壤中Q235钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2013, 33(3): 216-220) [11] Li X M, Zhang C Y, Zhu H, et al. Effect of erea on microbial corrosion behavior of Q235 steel in soil [J]. J. Chin. Soc. Corros. Prot., 2012, 32(5): 397-402 (李喜明, 张春颜, 朱辉等. 土壤中残余尿素对Q235钢微生物腐蚀的影响 [J]. 中国腐蚀与防护学报, 2012, 32(5): 397-402) [12] AlAbbas F M, Williamson C, Bhola S M, et al. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high- strength steel (API-5L X80) [J]. Int. Biodeterior. Biodegrad., 2013, [13] von Wolzogen Kuhr C A H. Unity of Anaerobic and Aerobic Iron Corrosion Process in the Soil [J]. Corrosion, 1961, 17(6): 293t-299t [14] King R A, Miller J D A. Corrosion by sulphate-reducing bacteria [J]. Nature, 1971, 233: 491-492 [15] Iverson W P. Corrosion of iron and formation of iron phosphide by desulfovibrio desulfuricans [J]. Nature, 1968, 217: 1265-1268 [16] Duan J, Wu S, Zhang X, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J]. Electrochim. Acta., 2008, 54(1): 22-28 [17] Sun C, Xu J, Wang F. Interaction of Sulfate-Reducing Bacteria and Carbon Steel Q235 in Biofilm [J]. Ind. Eng. Chem. Res., 2011, 50: 12797-12806 [18] Cheng S, Tian J, Chen S, et al. Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) Corrosion behavior [J]. Mater. Sci. Eng., 2009, C29(3): 751-755 [19] Dunne W M. Bacterial adhesion: Seen any good biofilms Lately? [J]. Clin. Microbiol. Rev., 2002, 15(2): 155-166 [20] Zuo R, Kus E, Mansfeld F, et al. The importance of live biofilms in corrosion protection [J]. Corros. Sci., 2005, 47(2): 279-287 [21] Werner S E, Johnson C A, Laycock N J, et al. Pitting of type 304 stainless steel in the presence of a biofilm containing sulphate reducing bacteria [J]. Corros. Sci., 1998, 40(2/3): 465-480 [22] Gonzalez J E G, Santana F J H, Mirza-Rosca J C. Effect of bacterial biofilm on 316 SS corrosion in natural seawater by EIS [J]. Corros. Sci., 1998, 40(12): 2141-2154 [23] Yu L, Duan J, Du X, et al. Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry [J]. Electrochem. Commun., [24] Cao C N. Principles of Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 2008 (曹楚南. 腐蚀电化学 [M]. 北京: 化学工业出版社, 2008) [25] Wu T Q,Yang P, Zhang M D, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (II) corrosion morphology and corrosion product analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 353-358 (吴堂清, 杨圃, 张明德等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (II) 腐蚀形貌和产物分析 [J]. 中国腐蚀与防护学报, 2014, 34: 353-358) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|