Please wait a minute...
中国腐蚀与防护学报  1998, Vol. 18 Issue (2): 136-140    
  研究报告 本期目录 | 过刊浏览 |
IncoMAP Al-9052合金在3.5%NaCl溶液中的应力腐蚀行为
胡津;ZhangRuby;WangZirui
哈尔滨工业大学材料科学与工程学院;哈尔滨150001中国科学院金属腐蚀与防护研究所沈阳110015;加拿大多伦多大学冶金与材料科学系;加拿大多伦多大学冶金与材料科学系
STRESS CORROSION CRACKING BEHAVIOR OF IncoMAP Al-9052 ALLOY IN 3.5% NaCl SOLUTION
HU Jin (Harbin Institute of Technology; Harbin 150001)(Institute of Corrosion and Protecton of Metals; Chinese Academy of Sciences)ZHANG Ruby WANG Zi-rui (University of Toronto; Toronto; Ontario; Canada)
全文: PDF(1909 KB)  
摘要: 采用双悬臂梁试样,实验研究了IncoMAP Al-9052合金在3.5%NaCl溶液中的应力腐蚀开裂(SCC)行为。结果表明该种合金的裂纹扩展机制有别于常规的铝合金。其初期阶段的裂纹扩展过程可划分为三个阶段,在每一阶段的裂纹扩展机制可能是不同的,但其裂纹扩展的主要机制为氢脆。
关键词 IncoMAP Al-9052合金应力腐蚀开裂氢脆    
Abstract:Stress corrosion cracking(SCC) behavior of high strength aluminum alloys has been studied extensively. Various mechanisms including anodic dissolution, hydrogen embrittlement, passivating film tear, and so on, were proposed to explain their SCC behavior. IncoMAP alloy Al-9052 is an Al-Mg alloy manufactured by mechanical alloying process. It has considerable potential for the material development because of its light weight, high strength and excellent corrosion resistance. However, few researches have been done on SCC behavior of the aluminum alloy. This study focused to evaluate the initial stage of its SCC behavior using Double-Cantilever-Beam (DCB) specimen in 3.5% NaCl solution. The results suggested that the crack propagation behavior of the alloy was different from that of normal aluminum alloys. At initial stage, the crack propagation process could be divided into three steps with various mechanisms. Nevertheless, hydrogen embrittlement dominated its SCC.
Key wordsIncoMAP alloy    Stress corrosion cracking    Hydrogen embrittlement
收稿日期: 1998-04-25     

引用本文:

胡津;ZhangRuby;WangZirui. IncoMAP Al-9052合金在3.5%NaCl溶液中的应力腐蚀行为[J]. 中国腐蚀与防护学报, 1998, 18(2): 136-140.
. STRESS CORROSION CRACKING BEHAVIOR OF IncoMAP Al-9052 ALLOY IN 3.5% NaCl SOLUTION. J Chin Soc Corr Pro, 1998, 18(2): 136-140.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y1998/V18/I2/136

1 Hermann R, Corrosion Science., 1988, 44(10):1560
2 Lee S-M, Pyun S-I, Chun Y-G, Metali. Trans., 1990, 22A:1991
3 Sundaresan R, Froes F H, Mechanical Alloying of Light Metals. In: New Materials by Mechanical Alloying Techniques. Arzt E, Schultz L, Eds., 1992, p.243
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 赵东杨, 周宇, 王冬颖, 那铎. 磷化处理对核主泵螺栓断裂行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[3] 张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[4] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[5] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[6] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[8] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[9] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[10] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[11] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[12] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[13] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[14] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[15] 李腾, 金伟良, 许晨, 毛江鸿. 电化学修复过程中钢筋析氢稳态临界电流密度测定实验方法[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.