Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 49-59     CSTR: 32134.14.1005.4537.2025.236      DOI: 10.11902/1005.4537.2025.236
  增材制造与腐蚀专题 本期目录 | 过刊浏览 |
低模量耐腐蚀亚稳 β 钛合金的电子束增材制造与性能研究
衣俊达1,2, 冷傲3, 宫得伦1,2, 韦博鑫1,2,4()
1.中国科学院金属研究所 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
3.北部战区总医院骨科 沈阳 110016
4.School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
Microstructureand Properties of Low Modulus Corrosion-resistant Metastable β-Ti Alloy Prepared by Electron Beam Melting
YI Junda1,2, LENG Ao3, GONG Delun1,2, WEI Boxin1,2,4()
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang 110016, China
4.School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
引用本文:

衣俊达, 冷傲, 宫得伦, 韦博鑫. 低模量耐腐蚀亚稳 β 钛合金的电子束增材制造与性能研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 49-59.
Junda YI, Ao LENG, Delun GONG, Boxin WEI. Microstructureand Properties of Low Modulus Corrosion-resistant Metastable β-Ti Alloy Prepared by Electron Beam Melting[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 49-59.

全文: PDF(8958 KB)   HTML
摘要: 

增材制造技术的发展为个性化生物医用钛合金的制备提供了新的路径。本研究采用电子束熔融(EBM)技术制备了一种新型亚稳β型钛合金Ti15Nb2.5Zr4Sn,并与传统Ti-6Al-4V (TC4)进行了对比,系统研究了合金的显微组织、力学性能以及在模拟体液(SBF)中的电化学腐蚀行为和生物相容性。结果表明,EBM成形的Ti15Nb2.5Zr4Sn合金以β相为主,具有明显的择优晶体取向,弹性模量降至约40 GPa,接近人体骨组织(10~30 GPa),可能会有效地缓解由较高弹性模量的骨植入物带来的所谓“应力遮挡效应”。在SBF中,Ti15Nb2.5Zr4Sn合金具有宽的钝化区间与较低的腐蚀电流密度(308 nA·cm-2),这是由于表面形成稳定致密的钝化膜,显著提高合金的耐腐蚀性能。合金的钝化膜主要由TiO2、Nb2O5、ZrO2和SnO2构成。细胞培养实验证实,在Ti15Nb2.5Zr4Sn合金表面,MC3T3-E1细胞黏附性强、骨架完整,表明合金具有良好的生物相容性。综上所述,EBM成形的Ti15Nb2.5Zr4Sn合金兼具低弹性模量、高耐蚀性与优异生物活性,展现出成为新一代骨科植入材料的应用潜力。

关键词 增材制造β钛合金电子束熔融腐蚀电化学弹性模量钝化膜    
Abstract

The advancement of additive manufacturing has provided new opportunities for the personalized customization of biomedical Ti-alloys. In this study, a novel β-Ti alloy, Ti15Nb2.5Zr4Sn, was fabricated by using electron beam melting (EBM), and its microstructure, mechanical properties, electrochemical behavior in simulated body fluid (SBF), and biocompatibility were systematically investigated in comparison with the conventional Ti-6Al-4V (TC4). The results showed that EBM-Ti15Nb2.5Zr4Sn exhibits a β-phase-dominated microstructure with a pronounced crystallographic texture. Its elastic modulus is approximately 40 GPa, which is closer to that of human cortical bone (10-30 GPa), thereby may be favor to alleviate the so called “stress shielding effect” caused by bone implants with a higher elastic modulus. The EBM-Ti15Nb2.5Zr4Sn alloy in SBF solution presented a wide passivation range (0.22-1.12 V) with a low corrosion current density (308 nA·cm-2), indicating the formation of a stable and protective passive film on its surface. X-ray photoelectron spectroscopy (XPS) analysis identified that the formed passive film composted of TiO2, Nb2O5, ZrO2 and SnO2. Cell culture experiments further demonstrated that MC3T3-E1 pre-osteoblasts adhered well to the Ti15Nb2.5Zr4Sn surface with intact cytoskeleton structures, indicating excellent biocompatibility of the alloy. In summary, the EBM-fabricated Ti15Nb2.5Zr4Sn alloy combines low elastic modulus, high corrosion resistance, and favorable biological activity, making it a promising candidate for next-generation orthopedic implant applications.

Key wordsadditive manufacturing    β-Ti alloy    electron beam melting    corrosion electrochemistry    elastic modulus    passive film
收稿日期: 2025-07-25      32134.14.1005.4537.2025.236
ZTFLH:  TG174  
基金资助:国家自然科学基金(52401254)
通讯作者: 韦博鑫,E-mail:bxwei17s@imr.ac.cn,研究方向为材料的腐蚀与防护
作者简介: 衣俊达,2025年毕业于大连海事大学,获得学士学位。同年经推荐免试进入中国科学技术大学材料科学与工程学院(中国科学院金属研究所)攻读硕士学位,师从韦博鑫副研究员。主要研究方向为钛合金的增材制造与腐蚀行为。
韦博鑫,博士,副研究员。研究聚焦于“腐蚀机理—防护技术—耐蚀材料设计”。以第一或通讯作者在Advanced Functional Materials、Acta Materialia、JMST、Corrosion Science 等期刊发表SCI 论文40余篇,出版学术专著1部。曾获中国科学院院长优秀奖、国际先进材料协会青年科学家奖章、中国发明学会创新创业二等奖等20余项荣誉。先后主持国家自然科学基金等国家级项目。现任《中国腐蚀与防护学报》的青年编委及Corrosion Communications (Elsevier)、Research in Materials Science (Taylor and Francis)期刊的编委。
图1  金属粉末的形貌特征、粒径分布及激光粉末床熔融(L-PBF)增材制造工艺示意图
图2  不同样品的晶粒取向图与晶体学织构极图对比
图3  EBM-Ti15Nb2.5Zr4Sn与TC4的合金XRD图谱
图4  EBM-Ti15Nb2.5Zr4Sn合金在室温下的拉伸应力-应变曲线
图5  EBM-Ti15Nb2.5Zr4Sn合金的力学性能对比分析:EBM-Ti15Nb2.5Zr4Sn和TC4合金的弹性模量图
图6  TC4与EBM-Ti15Nb2.5Zr4Sn合金在模拟体液中168 h浸泡期间的自腐蚀电位
图7  TC4合金和EBM-Ti15Nb2.5Zr4Sn合金在168 h浸泡过程中的Nyquist和Bode图
图8  拟合等效电路图
TypeTime / dRs / Ω·cm2Qf / 10-5 S·cm-2·S nn1Rf / Ω·cm2Qdl / 10-5 S·cm-2·S nn2Rct / 106 Ω·cm2
TC4 alloy022.452.480.917.930.181.000.83
121.411.440.9224.770.740.918.20
220.931.310.9322.230.760.914.07
319.991.180.9418.760.820.923.44
420.781.170.9421.100.780.923.99
519.611.050.9517.940.890.915.81
620.931.040.9518.530.870.916.93
720.521.110.9422.480.760.925.94
EBM-Ti15Nb2.5Zr4Sn020.742.020.9323.301.620.920.71
alloy120.11.490.9417.811.410.912.65
218.941.080.9518.601.180.917.07
318.710.880.9813.561.580.895.36
420.380.850.9815.021.510.895.82
520.241.270.9418.861.000.921.54
621.150.800.9815.121.450.896.16
721.090.820.9815.661.380.896.12
表1  EIS拟合结果
图9  TC4与EBM-Ti15Nb2.5Zr4Sn合金在模拟体液中腐蚀168 h后的动电位极化曲线
ParametersIcorr / nA·cm-2Ecorr/ mVEpit/ Vβa/ mV·dec-1βc/ mV·dec-1
TC4284-300.21.1590.1590.124
EBM-Ti15Nb2.5Zr4Sn308-312.71.1320.1560.120
表2  TC4与EBM-Ti15Nb2.5Zr4Sn合金的动电位极化曲线拟合结果
图10  TC4和Ti15Nb2.5Zr4Sn合金在恒电位(0.6 V vs. SCE)下的极化电流-时间曲线
图11  EBM-Ti15Nb2.5Zr4Sn合金表面钝化膜的XPS谱
图12  MC3T3-E1细胞在EBM-Ti15Nb2.5Zr4Sn合金表面的CLSM像
[1] Zhang E L, Wang X Y, Han Y. Research status of biomedical porous Ti and its alloy in China [J]. Acta Metall. Sin., 2017, 53: 1555
doi: 10.11900/0412.1961.2017.00324
[1] 张二林, 王晓燕, 憨 勇. 医用多孔Ti及钛合金的国内研究现状 [J]. 金属学报, 2017, 53: 1555
doi: 10.11900/0412.1961.2017.00324
[2] Frazier W E, William E. Metal additive manufacturing: A review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
[3] Rho J Y, Tsui T Y, Pharr G M. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation [J]. Biomaterials, 1997, 18: 1325
pmid: 9363331
[4] Hao Y L, Li S J, Sun S Y, et al. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications [J]. Acta Biomater., 2007, 3: 277
pmid: 17234466
[5] Cui Z D, Zhu J M, Jiang H, et al. Research progress of the surface modification of titanium and titanium alloys for biomedical application [J]. Acta Metall. Sin., 2022, 58: 837
doi: 10.11900/0412.1961.2022.00150
[5] 崔振铎, 朱家民, 姜 辉 等. Ti及钛合金表面改性在生物医用领域的研究进展 [J]. 金属学报, 2022, 58: 837
doi: 10.11900/0412.1961.2022.00150
[6] Tian Y Y, Zhang L G, Wu D, et al. Achieving stable ultra-low elastic modulus in near-β titanium alloys through cold rolling and pre-strain [J]. Acta Mater., 2025, 286: 120726.
doi: 10.1016/j.actamat.2025.120726
[7] Yang F, Li Z, Wang Q, et al. Cluster-formula-embedded machine learning for design of multicomponent β-Ti alloys with low Young'smodulus [J]. npj Comput. Mater., 2020, 6: 101
doi: 10.1038/s41524-020-00372-w
[8] Li C M, Chui P F, Ai T T, et al. Improving the strength and corrosion resistance of the biomedical Ti2448 alloy through the addition of trace interstitial nitrogen [J]. J. Alloy. Compd., 2025, 1020: 179362
doi: 10.1016/j.jallcom.2025.179362
[9] Yu Z T, Yu S, Cheng J, et al. Development and application of novel biomedical titanium alloy materials [J]. Acta Metall. Sin., 2017, 53: 1238
doi: 10.11900/0412.1961.2017.00288
[9] 于振涛, 余 森, 程 军 等. 新型医用钛合金材料的研发和应用现状 [J]. 金属学报, 2017, 53: 1238
doi: 10.11900/0412.1961.2017.00288
[10] Ji S X. Study on the microstructure and properties of Ti-34Nb-6Zr alloy for biomedical applications [D]. Tianjin: Tianjin University, 2007
[10] 计双兴. 生物医用钛合金Ti-34Nb-6Zr的组织及性能研究 [D]. 天津: 天津大学, 2007
[11] Liu M, Wang J, Zhu C H, et al. Electrochemical corrosion behavior of 3D-printed NiTi shape memory alloy in a simulated oral environment [J]. J. Chin. Soci. Corros. Prot., 2023, 43: 781
[11] 刘 明, 王 杰, 朱春晖 等. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 781
[12] Guo J B, Yang S H, Zhou Z Y, et al. High-temperature oxidation behavior of laser additively manufactured AlCoCrFeNiSi high entropy alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 217
[12] 郭静波, 杨守华, 周子翼 等. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为 [J]. 中国腐蚀与防护学报, 2025, 45: 217
doi: 10.11902/1005.4537.2024.313
[13] Shang J, Gu Y, Zhao J, et al. Corrosion behavior in molten salts at 850 oC and its effect on mechanical properties of hastelloy X alloy fabricated by additive manufacturing [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 671
[13] 尚 进, 古 岩, 赵 京 等. 增材制造Hastelloy X合金在850 ℃混合硫酸盐中热腐蚀行为及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 671
[14] Lei T, Chen S G, Liu X L, et al. Corrosion behavior of laser additive manufacturing AlSi10Mg Al-alloy in ethylene glycol coolant and detection of coolant degradation [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1014
[14] 雷 涛, 陈绍高, 刘秀利 等. 乙二醇冷却液的劣化检测及增材制造AlSi10Mg铝合金在其中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2025, 45: 1014
[15] Chen Y Y, Shi G H, Du Z M, et al. Research progress on additive manufacturing of TiAl alloys [J]. Acta Metall. Sin., 2024, 60: 1
[15] 陈玉勇, 时国浩, 杜之明 等. 增材制造TiAl合金的研究进展 [J]. 金属学报, 2024, 60: 1
doi: 10.11900/0412.1961.2022.00582
[16] Mao Y M, Zhao Q Y, Geng J H, et al. Research status and application of powder bed fusion additive manufactured titanium alloys [J]. Chin. J. Nonferrous Met., 24, 34: 2831
[16] 毛雅梅, 赵秦阳, 耿纪华 等. 粉末床熔融式增材制造钛合金研究进展及应用 [J]. 中国有色金属学报, 2024, 34: 2831
[17] Gokan K, Yamagishi Y, Mizuta K, et al. Effect of process parameters on the microstructure and high-temperature strengths of titanium aluminide alloy fabricated by electron beam melting [J]. Mater. Trans., 2023, 64: 104
doi: 10.2320/matertrans.MT-MLA2022016
[18] Ren D C, Zhang H B, Zhao X D, et al. Influence of manufacturing parameters on the properties of electron beam melted Ti-Ni alloy [J]. Acta Metall. Sin., 2020, 56: 1103
doi: 10.11900/0412.1961.2019.00410
[18] 任德春, 张慧博, 赵晓东 等. 打印参数对电子束增材制造Ti-Ni合金性能的影响 [J]. 金属学报, 2020, 56: 1103
doi: 10.11900/0412.1961.2019.00410
[19] Thalavai Pandian K, Neikter M, Bahbou F, et al. Elevated-temperature tensile properties of low-temperature HIP-treated EBM-built Ti-6Al-4V [J]. Materials, 2022, 15: 3624
doi: 10.3390/ma15103624
[20] Sherif E S M, Bahri Y A, Alharbi H F, et al. Corrosion passivation in simulated body fluid of Ti-Zr-Ta-xSn alloys as biomedical materials [J]. Materials, 2023, 16: 4603
doi: 10.3390/ma16134603
[21] Zhang S S, Liu Y C, Xu T W, et al. Effect of build-up direction and annealing on corrosion properties of selected laser melting Ti6Al4V alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 995
[21] 张珊珊, 刘元才, 徐铁伟 等. 成型方向及热处理对选区激光熔化Ti6Al4V合金腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2025, 45: 995
doi: 10.11902/1005.4537.2024.220
[22] Church N L, Talbot C E P, Jones N G. On the influence of thermal history on the martensitic transformation in Ti-24Nb-4Zr-8Sn (wt%) [J]. Shap. Mem. Superelast., 2021, 7: 166
doi: 10.1007/s40830-021-00309-2
[23] Yang R, Hao Y L, Obbard E G, et al. Orthorhombic phase transformations in titanium alloys and their applications [J]. Acta Metall. Sin., 2010, 46: 1443
doi: 10.3724/SP.J.1037.2010.00483
[23] 杨 锐, 郝玉琳, Obbard E G 等. 钛合金中的正交相变及其应用 [J]. 金属学报, 2010, 46: 1443
[24] Lee B S, Im Y D, Kim H G, et al. Stress-induced α″martensitic transformation mechanism in deformation twinning of metastable β-type Ti-27Nb-0.5Ge alloy under tension [J]. Mater. Trans., 2016, 57: 1868
doi: 10.2320/matertrans.M2016208
[25] Shi Y S, Wu H Z, Yan C Z, et al. Four-dimensional printing—The additive manufacturing technology of intelligent components [J]. J. Mech. Eng., 2020, 56: 1
[25] 史玉升, 伍宏志, 闫春泽 等. 4D打印—智能构件的增材制造技术 [J]. 机械工程学报, 2020, 56: 1
doi: 10.3901/JME.2020.15.001
[26] Tian Y X, Li S J, Hao Y L, et al. High temperature deformation behavior and microstructure evolution mechanism transformation in Ti2448 alloy [J]. Acta Metall. Sin., 2012, 48: 837
doi: 10.3724/SP.J.1037.2012.00007
[26] 田宇兴, 李述军, 郝玉琳 等. Ti2448合金高温变形行为及组织演变机制的转变 [J]. 金属学报, 2012, 48: 837
doi: 10.3724/SP.J.1037.2012.00007
[27] Dai J C, Min X H, Zhou K S, et al. Coupling effect of pre-strain combined with isothermal ageing on mechanical properties in a multilayered Ti-10Mo-1Fe/3Fe alloy [J]. Acta Metall. Sin., 2021, 57: 767
[27] 戴进财, 闵小华, 周克松 等. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能 [J]. 金属学报, 2021, 57: 767
doi: 10.11900/0412.1961.2020.00286
[28] Yan H J, Yin R Z, Wang W J, et al. Cyclic oxidation behavior of TiAl alloy with electrodeposited SiO2 coating [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 81
[28] 严豪杰, 殷若展, 汪文君 等. TiAl合金表面电沉积SiO2涂层抗循环氧化性能研究 [J]. 中国腐蚀与防护学报, 2025, 45: 81
doi: 10.11902/1005.4537.2024.246
[29] Shi K Y, Wu W J, Zhang Y, et al. Electrochemical properties of Nb coating on TC4 substrate in simulated body solution [J] J. Chin. Soc. Corros. Prot., 2021, 41: 71
[29] 史昆玉, 吴伟进, 张 毅 等. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 71
doi: 10.11902/1005.4537.2019.270
[30] Jirka I, Vandrovcová M, Frank O, et al. On the role of Nb-related sites of an oxidized β-TiNb alloy surface in its interaction with osteoblast-like MG-63 cells [J]. Mater. Sci. Eng., 2013, 33C: 1636
[1] 兰博韬, 吴斌, 明洪亮, 王俭秋, 韩恩厚. 选区激光熔化奥氏体不锈钢高温高压水中应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 1-14.
[2] 戴念维, 窦欣懿, 刘华剑, 冷滨. 增材制造合金在核能领域应用中的腐蚀研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 15-24.
[3] 周丽, 曹晓蝶, 来佑彬, 丁旺旺, 韦博鑫, 吴嘉俊. 热处理工艺对增材制造金属零件腐蚀行为影响的研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 37-48.
[4] 张俊男, 彭灿, 付琦, 张亮, 宋光铃. 海洋环境中铜绿假单胞菌对增材制造Al-Mg-Sc-Zr合金腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 60-70.
[5] 祝丁丁, 赵希雅, 张晓美, 梅子期, 逯文君, 王帅. 增材制造与铸造钛铝合金的微观组织及高温氧化行为对比研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 71-80.
[6] 谷清宇, 宋雁飞, 张亮亮, 王楠, 雷晓维. 激光定向能量沉积17-4PH不锈钢钝化与点蚀行为研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 103-114.
[7] 李柯萱, 王义朋, 廖伯凯. 电弧送丝增材、激光选区熔化增材和传统TC4钛合金钝化行为的对比研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 186-192.
[8] 庞曰艺, 张立波, 宁方强, 赵志坡, 闫宏, 刘佳. δ-铁素体对增材制造304L不锈钢液态铅铋腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2026, 46(1): 193-199.
[9] 黄泽邦, 刘光明, 范文学, 徐睿中, 朱炎彬, 刘晨辉. 钝化时间对304不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1741-1747.
[10] 何武豪, 刘阳, 杨思懿, 张韶栋, 吴伟, 张俊喜. 敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1331-1340.
[11] 雷涛, 陈绍高, 刘秀利, 范金龙, 郑兴文. 乙二醇冷却液的劣化检测及增材制造AlSi10Mg铝合金在其中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(4): 1014-1024.
[12] 许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[13] 翟熙伟, 刘士一, 王丽, 贾瑞灵, 张慧霞. 载荷对5383铝合金焊接接头电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[14] 郭静波, 杨守华, 周子翼, 牟仁德, 谢云, 舒小勇, 戴建伟, 彭晓. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[15] 谢文珍, 王震宇, 韩恩厚. 耐蚀钢筋在模拟混凝土孔隙液环境及海砂混凝土中钢筋在模拟海水环境中的钝化及腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(6): 1454-1464.