|
|
|
| 乙二醇-水冷媒中Cu-Al电偶腐蚀行为及反应机制研究 |
陈思敏, 练龙江, 黄延淞, 曾兰香, 雷冰( ), 孟国哲 |
| 中山大学化学工程与技术学院 珠海 519000 |
|
| Galvanic Corrosion Behavior and Reaction Mechanism of Cu-Al Couple in Ethylene Glycol-Water Coolent |
CHEN Simin, LIAN Longjiang, HUANG Yansong, ZENG Lanxiang, LEI Bing( ), MENG Guozhe |
| School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, China |
引用本文:
陈思敏, 练龙江, 黄延淞, 曾兰香, 雷冰, 孟国哲. 乙二醇-水冷媒中Cu-Al电偶腐蚀行为及反应机制研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 299-307.
Simin CHEN,
Longjiang LIAN,
Yansong HUANG,
Lanxiang ZENG,
Bing LEI,
Guozhe MENG.
Galvanic Corrosion Behavior and Reaction Mechanism of Cu-Al Couple in Ethylene Glycol-Water Coolent[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 299-307.
| [1] |
Yoon Y, Kim D R, Lee K S. Cooling performance and space efficiency improvement based on heat sink arrangement for power conversion electronics [J]. Appl. Therm. Eng., 2020, 164: 114458
doi: 10.1016/j.applthermaleng.2019.114458
|
| [2] |
Cho K, Chang H, Jung Y, et al. Economic analysis of data center cooling strategies [J]. Sustain. Cities Soc., 2017, 31: 234
doi: 10.1016/j.scs.2017.03.008
|
| [3] |
Peng Y H, Wang D H, Li X Y, et al. Cooling chip on PCB by embedded active microchannel heat sink [J]. Int. J. Heat Mass Transfer, 2022, 196: 123251
doi: 10.1016/j.ijheatmasstransfer.2022.123251
|
| [4] |
Wu X L, Yang J L, Liu Y, et al. Investigations on heat dissipation performance and overall characteristics of two-phase liquid immersion cooling systems for data center [J]. Int. J. Heat Mass Transfer, 2025, 239: 126575
doi: 10.1016/j.ijheatmasstransfer.2024.126575
|
| [5] |
Sun X Q, Han Z W, Li X M. Simulation study on cooling effect of two-phase liquid-immersion cabinet in data center [J]. Appl. Therm. Eng., 2022, 207: 118142
doi: 10.1016/j.applthermaleng.2022.118142
|
| [6] |
Deng Z, Zhang S L, Ma K F, et al. Numerical and experimental study on cooling high power chips of data centers using double-side cooling module based on mini-channel heat sink [J]. Appl. Therm. Eng., 2023, 227: 120282
doi: 10.1016/j.applthermaleng.2023.120282
|
| [7] |
Lu M Y, Zhang X L, Ji J, et al. Research progress on power battery cooling technology for electric vehicles [J]. J. Energy Storage, 2020, 27: 101155
doi: 10.1016/j.est.2019.101155
|
| [8] |
Jiang X, Song X L, Zhang Q, et al. Effect of ethylene glycol on corrosion behavior of X65 mild steel in CO2-saturated 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 375
|
| [8] |
蒋 秀, 宋晓良, 张 全 等. 乙二醇对X65钢在CO2饱和的3.5%NaCl溶液中腐蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2017, 37: 375
|
| [9] |
Santambrogio M, Perrucci G, Trueba M, et al. Effect of major degradation products of ethylene glycol aqueous solutions on steel corrosion [J]. Electrochim. Acta, 2016, 203: 439
doi: 10.1016/j.electacta.2016.03.144
|
| [10] |
Yu Z Y, Song X N, Cheng Y J, et al. Effect of ethylene glycol on corrosion behavior of 6063 aluminum alloy in valve cooling system [J]. Corros. Prot., 2020, 41(4): 7
|
| [10] |
于志勇, 宋小宁, 程一杰 等. 乙二醇对阀冷系统6063铝合金的腐蚀影响 [J]. 腐蚀与防护, 2020, 41(4): 7
|
| [11] |
Chakraborty S, Shukla D, Panigrahi P K. A review on coolant selection for thermal management of electronics and implementation of multiple-criteria decision-making approach [J]. Appl. Therm. Eng., 2024, 245: 122807
doi: 10.1016/j.applthermaleng.2024.122807
|
| [12] |
Tao D B, Tong X F, Cao Y L. Progress in research of antifreezing/cooling fluids for automotives [J]. Mater. Prot., 2007, 40(6): 49
|
| [12] |
陶佃彬, 童秀凤, 曹云龙. 汽车防冻冷却液的研究进展 [J]. 材料保护, 2007, 40(6): 49
|
| [13] |
Xin J Q, Wan C D, Zhu Z. Research status of heat transfer technology of liquid cooling plate of power battery [J]. Chin. J. Power Sources, 2024, 48: 1901
|
| [13] |
辛佳琦, 万长东, 朱 珠. 动力电池液冷板换热技术研究现状 [J]. 电源技术, 2024, 48: 1901
doi: 10.3969/j.issn.1002-087X.2024.10.005
|
| [14] |
Ju Z H, Yu K Y, Li Q, et al. Study on graphite/aluminum alloy composite heat conducting plate for enhancing paraffin phase change heat storage [J]. J. Eng. Thermophys., 2023, 44: 3399
|
| [14] |
句子涵, 于坤洋, 李 强 等. 石墨/铝合金复合导热板强化石蜡相变蓄热研究 [J]. 工程热物理学报, 2023, 44: 3399
|
| [15] |
Zhou W N, Dong K J, Sun Q, et al. Research progress of the liquid cold plate cooling technology for server electronic chips: A review [J]. Int. J. Energy Res., 2022, 46: 11574
doi: 10.1002/er.v46.9
|
| [16] |
Zhou K. Study of copper-aluminum composite tube plate in thermal management technology of power battery [D]. Guangzhou: Guangdong University of Technology, 2021
|
| [16] |
周 科. 铜铝复合管板在动力电池热管理技术中的研究 [D]. 广州: 广东工业大学, 2021
|
| [17] |
Liu Y H, Li Y Z, Yu D Z, et al. Research progress on corrosion failure behavior of printed circuit board in a service environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1145
|
| [17] |
刘元海, 李玉珠, 郁大照 等. 印制电路板在服役环境中的腐蚀失效行为研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1145
doi: 10.11902/1005.4537.2023.377
|
| [18] |
Zhao T L, Zhang L J, Qian J Y, et al. Corrosion behavior of Al-alloys 3A21, 5A05 and 6063 in low-conductive ethylene glycol coolant [J]. Corros. Sci. Prot. Technol., 2017, 29: 507
|
| [18] |
赵天亮, 张梁娟, 钱吉裕 等. 3A21、5A05和6063铝合金在低电导率乙二醇冷却液中的腐蚀行为 [J]. 腐蚀科学与防护技术, 2017, 29: 507
doi: 10.11903/1002.6495.2016.281
|
| [19] |
Fan J L, Gong M, Hou X, et al. Corrosion behavior of 3A21 aluminum alloy in ethylene glycol-water solution [J]. Corros. Prot., 2014, 35: 1116
|
| [19] |
范金龙, 龚 敏, 侯 肖 等. 3A21铝合金在乙二醇水溶液中的腐蚀行为 [J]. 腐蚀与防护, 2014, 35: 1116
|
| [20] |
Zhang G A, Xu L Y, Cheng Y F. Mechanistic aspects of electrochemical corrosion of aluminum alloy in ethylene glycol-water solution [J]. Electrochim. Acta, 2008, 53: 8245
doi: 10.1016/j.electacta.2008.06.043
|
| [21] |
Jin X, Rao C Y, Gao L X, et al. Corrosion behavior of aluminum alloy in simulated cooling fluid composed of ethylene glycol and water [J]. Mater. Prot., 2011, 44(9): 15
|
| [21] |
金 星, 饶楚仪, 高立新 等. 铝合金在乙二醇-水模拟冷却液中的腐蚀行为 [J]. 材料保护, 2011, 44(9): 15
|
| [22] |
Liu Y, Cheng Y F. Effects of coolant chemistry on corrosion of 3003 aluminum alloy in automotive cooling system [J]. Mater. Corros., 2010, 61: 574
|
| [23] |
Zhan D D, Wang C, Qian J Y, et al. Effect of trace Cl- and Cu2+ ions on corrosion behavior of 3A21 Al-alloy in ethylene glycol coolant [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 383
|
| [23] |
战栋栋, 王 成, 钱吉裕 等. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 383
doi: 10.11902/1005.4537.2020.082
|
| [24] |
Liu X, Gao F, Li S, et al. Effects of temperatures on corrosion of aluminium alloy 3A21 in glycol coolant [J]. Corros. Prot., 2025, 46(1): 53
|
| [24] |
刘 相, 高 峰, 李 森 等. 温度对乙二醇冷却液中铝合金3A21的腐蚀影响 [J]. 腐蚀与防护, 2025, 46(1): 53
|
| [25] |
Wang X D. Study on flow-induced corrosion of typical metal materials in new coolant [D]. Beijing: Beijing University of Chemical Technology, 2020
|
| [25] |
王欣笛. 典型金属材料在新型冷却液中的流动腐蚀研究 [D]. 北京: 北京化工大学, 2020
|
| [26] |
Cheng T C, Huang H L, Huang G L. Galvanic corrosion behavior between ADC12 aluminum alloy and copper in 3.5wt%NaCl solution [J]. J. Electroanal. Chem., 2022, 927: 116984
doi: 10.1016/j.jelechem.2022.116984
|
| [27] |
Lei B, Hu S N, Lu Y F, et al. Galvanic corrosion behavior and electric insulation between B10 and a high strength steel in seawater environment for warship [J]. Corros. Prot., 2019, 40: 497
|
| [27] |
雷 冰, 胡胜楠, 卢云飞 等. 海水环境中B10合金与高强钢的电偶腐蚀行为与电绝缘防护技术 [J]. 腐蚀与防护, 2019, 40: 497
|
| [28] |
Shi P F, Tang B, Zhou H B, et al. Galvanic corrosion compatibility of marine engineering dissimilar materials [J]. Ship Eng., 2022, 44: 154
|
| [28] |
石鹏飞, 唐 波, 周海波 等. 海洋工程装备异种材料的电偶腐蚀兼容性 [J]. 船舶工程, 2022, 44: 154
|
| [29] |
Xing S H, Liu J Z, Bai S Y, et al. Influence of seawater flow speed on galvanic corrosion behavior of B10/B30 alloys coupling [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 391
|
| [29] |
邢少华, 刘近增, 白舒宇 等. 海水流速对B10/B30电偶腐蚀行为影响规律研究 [J]. 中国腐蚀与防护学报, 2023, 43: 391
doi: 10.11902/1005.4537.2022.109
|
| [30] |
Ministry of Aviation Industry of PRC. Methods for the determination of current of different metal couples [S]. 1987
|
| [30] |
中华人民共和国航空工业部. 不同金属电偶电流测定方法 [S]. 1987
|
| [31] |
Lu Y F, Guo Q, Hu L Y, et al. analysis of the galvanic corrosion effect of high-potential metal piping systems on hull steel structures [J]. Mater. Prot., 2025, 58(4): 122
|
| [31] |
卢云飞, 郭 倩, 胡凌越 等. 高电位金属管路系统对船体钢结构的电偶腐蚀影响分析 [J]. 材料保护, 2025, 58(4): 122
|
| [32] |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Corrosion of metals and alloys—Evaluation of pitting corrosion [S]. Beijing: China Standard Press, 2004
|
| [32] |
中华人民共和国国家质量监督检验检疫总局. 金属和合金的腐蚀 点蚀评定方法 [S]. 北京: 中国标准出版社, 2004
|
| [33] |
Gao S L, Yu M, Liu J H, et al. Effects of cupric ions on the corrosion behavior of aluminum alloy 5A02 in ethylene glycol-water solution [J]. Int. J. Min. Met. Mater., 2017, 24: 423
doi: 10.1007/s12613-017-1423-4
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|