Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 299-307     CSTR: 32134.14.1005.4537.2025.081      DOI: 10.11902/1005.4537.2025.081
  研究报告 本期目录 | 过刊浏览 |
乙二醇-水冷媒中Cu-Al电偶腐蚀行为及反应机制研究
陈思敏, 练龙江, 黄延淞, 曾兰香, 雷冰(), 孟国哲
中山大学化学工程与技术学院 珠海 519000
Galvanic Corrosion Behavior and Reaction Mechanism of Cu-Al Couple in Ethylene Glycol-Water Coolent
CHEN Simin, LIAN Longjiang, HUANG Yansong, ZENG Lanxiang, LEI Bing(), MENG Guozhe
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, China
引用本文:

陈思敏, 练龙江, 黄延淞, 曾兰香, 雷冰, 孟国哲. 乙二醇-水冷媒中Cu-Al电偶腐蚀行为及反应机制研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 299-307.
Simin CHEN, Longjiang LIAN, Yansong HUANG, Lanxiang ZENG, Bing LEI, Guozhe MENG. Galvanic Corrosion Behavior and Reaction Mechanism of Cu-Al Couple in Ethylene Glycol-Water Coolent[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 299-307.

全文: PDF(10935 KB)   HTML
摘要: 

电子器件液体冷却系统回路中,广泛存在乙二醇冷媒介质下的异种金属材料电偶腐蚀兼容性问题,严重威胁着液冷系统的边界完整性和电子器件服役安全。本文通过电化学测试、腐蚀浸泡实验等方法,系统研究了乙二醇-水溶液中TP2铜合金和AA1060铝合金之间的电偶效应及反应机制。结果表明,在乙二醇-水溶液中,AA1060铝合金作为电偶阳极,TP2铜合金作为电偶阴极,二者腐蚀电位差达608.8 mV,电偶腐蚀风险高。腐蚀初期,电偶电位处于AA1060铝合金点蚀击破电位之上,AA1060铝合金在强阳极极化作用下发生自发的点蚀行为。通过腐蚀浸泡实验获得的AA1060铝合金最大点蚀深度(188.24 μm)对应的最大点蚀速率2.29 mm/a,高于电偶电流推算的腐蚀速率1.09 mm/a,这种腐蚀速率的差异与Cu2+在AA1060铝合金反沉积、并诱发局部微电偶效应相关。在该过程中,由于乙二醇溶液电阻大,TP2铜合金未充分阴极极化,仍能通过自腐蚀溶解部分Cu2+,溶解的Cu2+在AA1060铝合金表面通过置换反应生成单质Cu,并与Al基体形成局部的Cu-Al微电偶,进一步促进了AA1060铝合金的局部溶解,使得电化学测试得到的腐蚀速率小于实际腐蚀速率。

关键词 乙二醇冷媒电偶腐蚀TP2铜合金AA1060铝合金    
Abstract

In the circuit of liquid cooling system of electronic devices, there is a widespread problem of galvanic corrosion compatibility of dissimilar metal in ethylene glycol coolant, which seriously threatens the boundary integrity of liquid cooling system and the service safety of electronic devices. Based on this background, the galvanic effect and reaction mechanism between TP2 Cu-alloy and AA1060 Al-alloy in ethylene glycol-water coolent was assessed -by means of electrochemical corrosion testing and static immersion corrosion test. The results show that the corrosion potential difference of AA1060 Al-alloy as anode and TP2 Cu-alloy as cathode is 608.8 mV in ethylene glycol-water coolent, thus the risk of galvanic corrosion is high. At the initial stage of corrosion, the galvanic potential is above the pitting potential of AA1060 Al-alloy, while the spontaneous pitting of AA1060 Al-alloy occurs due to the action of strong anode polarization. The maximum pitting rate corresponding to the maximum pitting depth of AA1060 Al-alloy (188.24 μm) acquired by the immersion test is 2.29 mm/a, which is higher than the corrosion rate calculated by the galvanic current of 1.09 mm/a. This difference in corrosion rate is related to the reverse deposition of Cu2+ on AA1060 Al-alloy and the induced local micro-galvanic effect. In this process, due to the large resistance of ethylene glycol coolent and insufficient cathodic polarization of TP2, part of Cu2+ can still be dissolved through free-corrosion. The dissolved Cu2+ forms a simple Cu on the surface of AA1060 Al-alloy through displacement reaction, and forms a local micro-couple of Cu with Al matrix, which further promotes the local dissolution of AA1060 Al-alloy. Therefore, the corrosion rate acquied by electrochemical test is less than the actual corrosion rate.

Key wordsethylene glycol refrigerant    galvanic corrosion    TP2 Cu-alloy    AA1060 Al-alloy
收稿日期: 2025-03-11      32134.14.1005.4537.2025.081
ZTFLH:  TG174  
通讯作者: 雷冰,E-mail:leibing@mail.sysu.edu.cn,研究方向为海洋腐蚀防护
作者简介: 陈思敏,女,1998年生,硕士生
MaterialFeGaVTiZnSnSiZnCuAl
TP2 Cu-alloy0.08----0.0060.0050.004Bal.-
AA1060 Al-alloy0.1930.0180.0180.0130.007-0.004-0.005Bal.
表1  实验用铜合金和铝合金的主要化学成分
图1  TP2铜合金和AA1060铝合金在含55%乙二醇的水溶液中的开路电位
图2  TP2铜合金和AA1060铝合金在55%乙二醇的水溶液中的极化曲线
MaterialEcorr / mV (vs. SCE)Icorr / μA·cm-2βa / mV·dec-1βc / mV·dec-1
AA1060 Al-alloy-650.20.11539.3-196.1
TP2 Cu-alloy40.40.45377.5-271.5
表2  TP2铜合金和AA1060铝合金的极化曲线拟合参数
图3  TP2-AA1060合金电偶对在55%乙二醇的水溶液中浸泡不同时间后的偶合电位和电偶电流密度
RankCurrent density / μA·cm-2Corrosion gradeUsage suggestion
AIg ≤ 0.3No corrosionDirect contact
B0.3 < Ig ≤ 1.0Slight corrosionContact in certain condition
C1.0 < Ig ≤ 3.0Local corrosionNo contact, use after protection
D3.0 < Ig ≤ 10.0Critical corrosionNo contact, use after protection
EIg ≥ 10.0Severe corrosionNo contact, use after protection
表3  电偶电流密度与对应电偶腐蚀风险等级[30]
Corrosion gradeAnodic corrosion rate / mm·a-1
0< 2.29 × 10-4
12.54 × 10-4-2.29 × 10-3
22.54 × 10-3-2.29 × 10-2
32.54 × 10-2-1.26
41.27-2.53
52.54-25.39
6> 25.40
表4  电偶兼容性评估准则[31]
图4  TP2-AA1060合金电偶对在55%乙二醇的水溶液中的极化曲线
图5  TP2铜合金在55%乙二醇的水溶液中浸泡30 d后的表面形貌
图6  AA1060铝合金在55%乙二醇的水溶液中浸泡30 d后的表面形貌
图7  AA1060铝合金表面典型点蚀坑的三维形貌示意图及深度-累积概率分布散点图
Corrosion gradeABC
Density / points·m-2Size / mm2Depth / mm
1≤ 2.5 × 103≤ 0.5≤ 0.4
22.5 × 103-1 × 1040.5-2.00.4-0.8
31 × 104-5 × 1042.0-8.00.8-1.6
45 × 104-1 × 1058.0-12.51.6-3.2
51 × 105-5 × 10512.5-24.53.2-6.4
表5  依据点蚀坑密度和大小对点蚀等级评定[32]
图8  TP2-AA1060合金电偶对在55%乙二醇的水溶液中的腐蚀机理图
图9  偶合状态下AA1060铝合金在含55%乙二醇的水溶液中浸泡30 d后的表面XPS全谱和Cu的精细谱图
[1] Yoon Y, Kim D R, Lee K S. Cooling performance and space efficiency improvement based on heat sink arrangement for power conversion electronics [J]. Appl. Therm. Eng., 2020, 164: 114458
doi: 10.1016/j.applthermaleng.2019.114458
[2] Cho K, Chang H, Jung Y, et al. Economic analysis of data center cooling strategies [J]. Sustain. Cities Soc., 2017, 31: 234
doi: 10.1016/j.scs.2017.03.008
[3] Peng Y H, Wang D H, Li X Y, et al. Cooling chip on PCB by embedded active microchannel heat sink [J]. Int. J. Heat Mass Transfer, 2022, 196: 123251
doi: 10.1016/j.ijheatmasstransfer.2022.123251
[4] Wu X L, Yang J L, Liu Y, et al. Investigations on heat dissipation performance and overall characteristics of two-phase liquid immersion cooling systems for data center [J]. Int. J. Heat Mass Transfer, 2025, 239: 126575
doi: 10.1016/j.ijheatmasstransfer.2024.126575
[5] Sun X Q, Han Z W, Li X M. Simulation study on cooling effect of two-phase liquid-immersion cabinet in data center [J]. Appl. Therm. Eng., 2022, 207: 118142
doi: 10.1016/j.applthermaleng.2022.118142
[6] Deng Z, Zhang S L, Ma K F, et al. Numerical and experimental study on cooling high power chips of data centers using double-side cooling module based on mini-channel heat sink [J]. Appl. Therm. Eng., 2023, 227: 120282
doi: 10.1016/j.applthermaleng.2023.120282
[7] Lu M Y, Zhang X L, Ji J, et al. Research progress on power battery cooling technology for electric vehicles [J]. J. Energy Storage, 2020, 27: 101155
doi: 10.1016/j.est.2019.101155
[8] Jiang X, Song X L, Zhang Q, et al. Effect of ethylene glycol on corrosion behavior of X65 mild steel in CO2-saturated 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 375
[8] 蒋 秀, 宋晓良, 张 全 等. 乙二醇对X65钢在CO2饱和的3.5%NaCl溶液中腐蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2017, 37: 375
[9] Santambrogio M, Perrucci G, Trueba M, et al. Effect of major degradation products of ethylene glycol aqueous solutions on steel corrosion [J]. Electrochim. Acta, 2016, 203: 439
doi: 10.1016/j.electacta.2016.03.144
[10] Yu Z Y, Song X N, Cheng Y J, et al. Effect of ethylene glycol on corrosion behavior of 6063 aluminum alloy in valve cooling system [J]. Corros. Prot., 2020, 41(4): 7
[10] 于志勇, 宋小宁, 程一杰 等. 乙二醇对阀冷系统6063铝合金的腐蚀影响 [J]. 腐蚀与防护, 2020, 41(4): 7
[11] Chakraborty S, Shukla D, Panigrahi P K. A review on coolant selection for thermal management of electronics and implementation of multiple-criteria decision-making approach [J]. Appl. Therm. Eng., 2024, 245: 122807
doi: 10.1016/j.applthermaleng.2024.122807
[12] Tao D B, Tong X F, Cao Y L. Progress in research of antifreezing/cooling fluids for automotives [J]. Mater. Prot., 2007, 40(6): 49
[12] 陶佃彬, 童秀凤, 曹云龙. 汽车防冻冷却液的研究进展 [J]. 材料保护, 2007, 40(6): 49
[13] Xin J Q, Wan C D, Zhu Z. Research status of heat transfer technology of liquid cooling plate of power battery [J]. Chin. J. Power Sources, 2024, 48: 1901
[13] 辛佳琦, 万长东, 朱 珠. 动力电池液冷板换热技术研究现状 [J]. 电源技术, 2024, 48: 1901
doi: 10.3969/j.issn.1002-087X.2024.10.005
[14] Ju Z H, Yu K Y, Li Q, et al. Study on graphite/aluminum alloy composite heat conducting plate for enhancing paraffin phase change heat storage [J]. J. Eng. Thermophys., 2023, 44: 3399
[14] 句子涵, 于坤洋, 李 强 等. 石墨/铝合金复合导热板强化石蜡相变蓄热研究 [J]. 工程热物理学报, 2023, 44: 3399
[15] Zhou W N, Dong K J, Sun Q, et al. Research progress of the liquid cold plate cooling technology for server electronic chips: A review [J]. Int. J. Energy Res., 2022, 46: 11574
doi: 10.1002/er.v46.9
[16] Zhou K. Study of copper-aluminum composite tube plate in thermal management technology of power battery [D]. Guangzhou: Guangdong University of Technology, 2021
[16] 周 科. 铜铝复合管板在动力电池热管理技术中的研究 [D]. 广州: 广东工业大学, 2021
[17] Liu Y H, Li Y Z, Yu D Z, et al. Research progress on corrosion failure behavior of printed circuit board in a service environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1145
[17] 刘元海, 李玉珠, 郁大照 等. 印制电路板在服役环境中的腐蚀失效行为研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1145
doi: 10.11902/1005.4537.2023.377
[18] Zhao T L, Zhang L J, Qian J Y, et al. Corrosion behavior of Al-alloys 3A21, 5A05 and 6063 in low-conductive ethylene glycol coolant [J]. Corros. Sci. Prot. Technol., 2017, 29: 507
[18] 赵天亮, 张梁娟, 钱吉裕 等. 3A21、5A05和6063铝合金在低电导率乙二醇冷却液中的腐蚀行为 [J]. 腐蚀科学与防护技术, 2017, 29: 507
doi: 10.11903/1002.6495.2016.281
[19] Fan J L, Gong M, Hou X, et al. Corrosion behavior of 3A21 aluminum alloy in ethylene glycol-water solution [J]. Corros. Prot., 2014, 35: 1116
[19] 范金龙, 龚 敏, 侯 肖 等. 3A21铝合金在乙二醇水溶液中的腐蚀行为 [J]. 腐蚀与防护, 2014, 35: 1116
[20] Zhang G A, Xu L Y, Cheng Y F. Mechanistic aspects of electrochemical corrosion of aluminum alloy in ethylene glycol-water solution [J]. Electrochim. Acta, 2008, 53: 8245
doi: 10.1016/j.electacta.2008.06.043
[21] Jin X, Rao C Y, Gao L X, et al. Corrosion behavior of aluminum alloy in simulated cooling fluid composed of ethylene glycol and water [J]. Mater. Prot., 2011, 44(9): 15
[21] 金 星, 饶楚仪, 高立新 等. 铝合金在乙二醇-水模拟冷却液中的腐蚀行为 [J]. 材料保护, 2011, 44(9): 15
[22] Liu Y, Cheng Y F. Effects of coolant chemistry on corrosion of 3003 aluminum alloy in automotive cooling system [J]. Mater. Corros., 2010, 61: 574
[23] Zhan D D, Wang C, Qian J Y, et al. Effect of trace Cl- and Cu2+ ions on corrosion behavior of 3A21 Al-alloy in ethylene glycol coolant [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 383
[23] 战栋栋, 王 成, 钱吉裕 等. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 383
doi: 10.11902/1005.4537.2020.082
[24] Liu X, Gao F, Li S, et al. Effects of temperatures on corrosion of aluminium alloy 3A21 in glycol coolant [J]. Corros. Prot., 2025, 46(1): 53
[24] 刘 相, 高 峰, 李 森 等. 温度对乙二醇冷却液中铝合金3A21的腐蚀影响 [J]. 腐蚀与防护, 2025, 46(1): 53
[25] Wang X D. Study on flow-induced corrosion of typical metal materials in new coolant [D]. Beijing: Beijing University of Chemical Technology, 2020
[25] 王欣笛. 典型金属材料在新型冷却液中的流动腐蚀研究 [D]. 北京: 北京化工大学, 2020
[26] Cheng T C, Huang H L, Huang G L. Galvanic corrosion behavior between ADC12 aluminum alloy and copper in 3.5wt%NaCl solution [J]. J. Electroanal. Chem., 2022, 927: 116984
doi: 10.1016/j.jelechem.2022.116984
[27] Lei B, Hu S N, Lu Y F, et al. Galvanic corrosion behavior and electric insulation between B10 and a high strength steel in seawater environment for warship [J]. Corros. Prot., 2019, 40: 497
[27] 雷 冰, 胡胜楠, 卢云飞 等. 海水环境中B10合金与高强钢的电偶腐蚀行为与电绝缘防护技术 [J]. 腐蚀与防护, 2019, 40: 497
[28] Shi P F, Tang B, Zhou H B, et al. Galvanic corrosion compatibility of marine engineering dissimilar materials [J]. Ship Eng., 2022, 44: 154
[28] 石鹏飞, 唐 波, 周海波 等. 海洋工程装备异种材料的电偶腐蚀兼容性 [J]. 船舶工程, 2022, 44: 154
[29] Xing S H, Liu J Z, Bai S Y, et al. Influence of seawater flow speed on galvanic corrosion behavior of B10/B30 alloys coupling [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 391
[29] 邢少华, 刘近增, 白舒宇 等. 海水流速对B10/B30电偶腐蚀行为影响规律研究 [J]. 中国腐蚀与防护学报, 2023, 43: 391
doi: 10.11902/1005.4537.2022.109
[30] Ministry of Aviation Industry of PRC. Methods for the determination of current of different metal couples [S]. 1987
[30] 中华人民共和国航空工业部. 不同金属电偶电流测定方法 [S]. 1987
[31] Lu Y F, Guo Q, Hu L Y, et al. analysis of the galvanic corrosion effect of high-potential metal piping systems on hull steel structures [J]. Mater. Prot., 2025, 58(4): 122
[31] 卢云飞, 郭 倩, 胡凌越 等. 高电位金属管路系统对船体钢结构的电偶腐蚀影响分析 [J]. 材料保护, 2025, 58(4): 122
[32] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Corrosion of metals and alloys—Evaluation of pitting corrosion [S]. Beijing: China Standard Press, 2004
[32] 中华人民共和国国家质量监督检验检疫总局. 金属和合金的腐蚀 点蚀评定方法 [S]. 北京: 中国标准出版社, 2004
[33] Gao S L, Yu M, Liu J H, et al. Effects of cupric ions on the corrosion behavior of aluminum alloy 5A02 in ethylene glycol-water solution [J]. Int. J. Min. Met. Mater., 2017, 24: 423
doi: 10.1007/s12613-017-1423-4
[1] 阮智邦, 魏仕轩, 王树鹏, 吕正平, 李格升, 李燚周. 中性氯化钠溶液中咪唑啉磷酸酯对7075铝合金电偶腐蚀抑制行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1734-1740.
[2] 王海洋, 林川弘昕, 郭丽雅. 平行磁场下顺磁性镧铁硅基磁热合金的微电偶腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(6): 1748-1754.
[3] 蔡科涛, 季磊, 张震, 冯强, 邓伟林, 兰贵红, 何莎, 赵占勇, 白培康. Mg-Gd-Y-Zn-Zr合金在NaClNa2SO4 溶液中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1289-1299.
[4] 谷松伦, 张繁, 黄国胜, 姜丹, 董国君. 冷喷涂Cu-Ti伪合金防污材料的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1309-1319.
[5] 方焕杰, 周鹏, 郁健浩, 王永欣, 于波, 蒲吉斌. Ti80合金与船用金属的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 905-915.
[6] 庞洁, 刘相局, 刘娜珍, 侯保荣. T2铜合金和Q235钢在模拟北山地下水环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1435-1442.
[7] 尹洁, 高永浩, 易芳. Ag微合金化对Mg-Zn-Ca合金微观组织及腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1274-1284.
[8] 乔泽, 李清泉, 刘晓航, 李燚周. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[9] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[10] 张勤号, 朱泽洁, 蔡浩冉, 李鑫冉, 孟宪泽, 李昊, 伍廉奎, 罗荘竹, 曹发和. Pt/IrO x -pH超微电化学传感器性能探究及其在铜/不锈钢电偶腐蚀研究中的应用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[11] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[12] 邢少华, 刘仲晔, 刘近增, 白舒宇, 钱峣, 张大磊. ZCuSn5Pb5Zn5/B10偶对在流动海水中的腐蚀规律与机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[13] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[14] 倪雨朦, 于英杰, 严慧, 王嵬, 李瑛. 铜铝/镍石墨可磨耗封严涂层相选择性溶解机制有限元研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[15] 邢少华, 刘近增, 白舒宇, 钱峣, 张大磊, 马力. 海水流速对B10/B30电偶腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.