|
|
|
| ZnAlCe-NO2 水滑石@硅烷涂层的氯离子捕获和响应缓蚀行为 |
谭敬莎, 郭艺超, 陈俊霖, 盖文峰, 孟国哲( ) |
| 中山大学化学工程与技术学院 珠海 519082 |
|
| Chloride Ion Capture and Responsive Corrosion Inhibition Behavior of ZnAlCe-NO2 Hydrotalcite @ Silane Coating |
TAN Jingsha, GUO Yichao, CHEN Junlin, GAI Wenfeng, MENG Guozhe( ) |
| School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China |
引用本文:
谭敬莎, 郭艺超, 陈俊霖, 盖文峰, 孟国哲. ZnAlCe-NO2 水滑石@硅烷涂层的氯离子捕获和响应缓蚀行为[J]. 中国腐蚀与防护学报, 2026, 46(1): 207-219.
Jingsha TAN,
Yichao GUO,
Junlin CHEN,
Wenfeng GAI,
Guozhe MENG.
Chloride Ion Capture and Responsive Corrosion Inhibition Behavior of ZnAlCe-NO2 Hydrotalcite @ Silane Coating[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 207-219.
| [1] |
You Y, Shang C J, Chen L, et al. Investigation on the crystallography of reverted structure and its effect on the properties of low carbon steel [J]. Mater. Sci. Eng., 2012, 546A: 111
|
| [2] |
Ali Gürten A, Keleş H, Bayol E, et al. The effect of temperature and concentration on the inhibition of acid corrosion of carbon steel by newly synthesized Schiff base [J]. J. Ind. Eng. Chem., 2015, 27: 68
doi: 10.1016/j.jiec.2014.11.046
|
| [3] |
Ataei S, Khorasani S N, Neisiany R E. Biofriendly vegetable oil healing agents used for developing self-healing coatings: a review [J]. Prog. Org. Coat., 2019, 129: 77
|
| [4] |
Zhang Y, Liu J H, Li Y D, et al. Enhancement of active anticorrosion via Ce-doped Zn-Al layered double hydroxides embedded in sol-gel coatings on aluminum alloy [J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2017, 32: 1199
doi: 10.1007/s11595-017-1731-6
|
| [5] |
Karthik N, Lee Y R, Sethuraman M G. Hybrid sol-gel/thiourea binary coating for the mitigation of copper corrosion in neutral medium [J]. Prog. Org. Coat., 2017, 102: 259
|
| [6] |
Wu L K, Wu J J, Wu W Y, et al. Sol-gel-based coatings for oxidation protection of TiAl alloys [J]. J. Mater. Sci., 2020, 55: 6330
doi: 10.1007/s10853-020-04466-0
|
| [7] |
Chen H, Shen J, Deng J Z, et al. Sol-gel coatings with hydrothermal hydroxylation as pre-treatment for 2198-T851 corrosion protection performance [J]. App. Surf. Sci., 2020, 508: 145285
doi: 10.1016/j.apsusc.2020.145285
|
| [8] |
Akbarzadeh S, Paint Y, Olivier M G. A comparative study of different sol-gel coatings for sealing the plasma electrolytic oxidation (PEO) layer on AA2024 alloy [J]. Electrochim. Acta, 2023, 443: 141930
doi: 10.1016/j.electacta.2023.141930
|
| [9] |
Figueira R B. Hybrid sol-gel coatings for corrosion mitigation: A critical review [J]. Polymers, 2020, 12: 689
doi: 10.3390/polym12030689
|
| [10] |
Voevodin N N, Grebasch N T, Soto W S, et al. Potentiodynamic evaluation of sol-gel coatings with inorganic inhibitors [J]. Surf. Coat. Technol., 2001, 140: 24
doi: 10.1016/S0257-8972(01)00999-9
|
| [11] |
Zheludkevich M L, Serra R, Montemor M F, et al. Nanostructured sol-gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3: Corrosion protection performance [J]. Electrochim. Acta, 2005, 51: 208
doi: 10.1016/j.electacta.2005.04.021
|
| [12] |
Liu Y H, Jin X H, Hu J M. Electrodeposited silica films post-treated with organosilane coupling agent as the pretreatment layers of organic coating system [J]. Corros. Sci., 2016, 106: 127
doi: 10.1016/j.corsci.2016.01.032
|
| [13] |
Hu C W, Li D F, Guo Y H, et al. Supermolecular layered double hydroxides [J]. Chin. Sci. Bull., 2001, 46: 1061
doi: 10.1007/BF02900678
|
| [14] |
Guo X X, Zhang F Z, Peng Q, et al. Layered double hydroxide/eggshell membrane: an inorganic biocomposite membrane as an efficient adsorbent for Cr(VI) removal [J]. Chem. Eng. J., 2011, 166: 81
doi: 10.1016/j.cej.2010.10.010
|
| [15] |
Mir Z M, Bastos A, Gomes C, et al. Numerical and experimental analysis of self-protection in reinforced concrete due to application of Mg-Al-NO2 layered double hydroxides [J]. Adv. Eng. Mater., 2020, 22: 2000398
doi: 10.1002/adem.v22.11
|
| [16] |
Zheludkevich M L, Poznyak S K, Rodrigues L M, et al. Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor [J]. Corros. Sci., 2010, 52: 602
doi: 10.1016/j.corsci.2009.10.020
|
| [17] |
Li W H, Liu A, Tian H W, et al. Controlled release of nitrate and molybdate intercalated in Zn-Al-layered double hydroxide nanocontainers towards marine anticorrosion applications [J]. Colloid Interface Sci. Commun., 2018, 24: 18
doi: 10.1016/j.colcom.2018.03.003
|
| [18] |
Alibakhshi E, Ghasemi E, Mahdavian M, et al. Fabrication and characterization of layered double hydroxide/silane nanocomposite coatings for protection of mild steel [J]. J. Taiwan Inst. Chem. Eng., 2017, 80: 924
doi: 10.1016/j.jtice.2017.08.015
|
| [19] |
Inayat A, Klumpp M, Schwieger W. The urea method for the direct synthesis of ZnAl layered double hydroxides with nitrate as the interlayer anion [J]. Appl. Clay. Sci., 2011, 51: 452
doi: 10.1016/j.clay.2011.01.008
|
| [20] |
Zhang Q, Zhang G J, Huang Y W, et al. Surface-modified LDH nanosheets with high dispersibility in oil for friction and wear reduction [J]. ACS Appl. Mater. Interfaces, 2024, 16: 5316
doi: 10.1021/acsami.3c17322
|
| [21] |
Yang M S, Gu L H, Yang B, et al. Antifouling composites with self-adaptive controlled release based on an active compound intercalated into layered double hydroxides [J]. Appl. Surf. Sci., 2017, 426: 185
doi: 10.1016/j.apsusc.2017.07.207
|
| [22] |
Roobottom H K, Jenkins H D B, Passmore J, et al. Thermochemical radii of complex ions [J]. J. Chem. Educ., 1999, 76: 1570
doi: 10.1021/ed076p1570
|
| [23] |
Ma G X, Xu J X, Han L, et al. Enhanced inhibition performance of NO 2 - intercalated MgAl-LDH modified with nano-SiO2 on steel corrosion in simulated concrete pore solution [J]. Corros. Sci., 2022, 204: 110387
doi: 10.1016/j.corsci.2022.110387
|
| [24] |
Liu A, Tian H W, Li W H, et al. Delamination and self-assembly of layered double hydroxides for enhanced loading capacity and corrosion protection performance [J]. Appl. Surf. Sci., 2018, 462: 175
doi: 10.1016/j.apsusc.2018.08.109
|
| [25] |
Zuo J D, Wu B, Luo C Y, et al. Preparation of MgAl layered double hydroxides intercalated with nitrite ions and corrosion protection of steel bars in simulated carbonated concrete pore solution [J]. Corros. Sci., 2019, 152: 120
doi: 10.1016/j.corsci.2019.03.007
|
| [26] |
Carneiro J, Caetano A F, Kuznetsova A, et al. Polyelectrolyte-modified layered double hydroxide nanocontainers as vehicles for combined inhibitors [J]. RSC Adv., 2015, 5: 39916
doi: 10.1039/C5RA03741G
|
| [27] |
Cheng M, Liu J H, Liu Y Q, et al. Three birds with one stone: contemporaneously boosting passive, active and self-healing properties for long-term anticorrosion coatings [J]. Chem. Eng. J., 2023, 459: 141532
doi: 10.1016/j.cej.2023.141532
|
| [28] |
Bai Z H, Meng S, Cui Y X, et al. A stable anticorrosion coating with multifunctional linkage against seawater corrosion [J]. Composites, 2023, 259B: 110733
|
| [29] |
Liu S P, Zhang X F, Rao J S, et al. Ni-Co hydrotalcite modified diatom to achieve corrosion inhibition and Cl- adsorption for long-term corrosion protection of steel [J]. Corros. Sci., 2023, 225: 111589
doi: 10.1016/j.corsci.2023.111589
|
| [30] |
Zhou Z Y, Pourhashem S, Wang Z Q, et al. Mxene structure: a key parameter in corrosion barrier performance of organic coatings [J]. J. Ind. Eng. Chem., 2022, 116: 310
doi: 10.1016/j.jiec.2022.09.021
|
| [31] |
Borisova D, Akçakayıran D, Schenderlein M, et al. Nanocontainer-based anticorrosive coatings: Effect of the container size on the self-healing performance [J]. Adv. Funct. Mater., 2013, 23: 3799
doi: 10.1002/adfm.v23.30
|
| [32] |
Zhang F, Pan J S, Claesson P M. Electrochemical and AFM studies of mussel adhesive protein (Mefp-1) as corrosion inhibitor for carbon steel [J]. Electrochim. Acta, 2011, 56: 1636
doi: 10.1016/j.electacta.2010.10.033
|
| [33] |
Mohamed A, Visco Jr D P, Bastidas D M. Effect of cations on the activity coefficient of NO 2 - /NO 3 - corrosion inhibitors in simulated concrete pore solution: an electrochemical thermodynamics study [J]. Corros. Sci., 2022, 206: 110476
doi: 10.1016/j.corsci.2022.110476
|
| [34] |
Zhang M, Xu F, Lin D, et al. A smart anti-corrosion coating based on triple functional fillers [J]. Chem. Eng. J., 2022, 446: 137078
doi: 10.1016/j.cej.2022.137078
|
| [35] |
Liu A, Tian H W, Li S C, et al. Bioinspired layered hybrid coatings with greatly enhanced barrier effect and active corrosion protection performance [J]. Prog. Org. Coat., 2021, 152: 106131
|
| [36] |
Tedim J, Kuznetsova A, Salak A N, et al. Zn-Al layered double hydroxides as chloride nanotraps in active protective coatings [J]. Corros. Sci., 2012, 55: 1
doi: 10.1016/j.corsci.2011.10.003
|
| [37] |
Chen H L, Li X J, Wei Y. Corrosion mechanism of carbon steel in chloride solution [J]. Corros. Prot., 2007, 28: 17
|
| [37] |
陈惠玲, 李晓娟, 魏 雨. 碳钢在含氯离子环境中腐蚀机理的研究 [J]. 腐蚀与防护, 2007, 28: 17
|
| [38] |
Ding C D, Tai Y, Wang D, et al. Superhydrophobic composite coating with active corrosion resistance for AZ31B magnesium alloy protection [J]. Chem. Eng. J., 2019, 357: 518
doi: 10.1016/j.cej.2018.09.133
|
| [39] |
Xu J H, Gao F, Wang H, et al. Organic/inorganic hybrid waterborne polyurethane coatings with self-healing properties for anticorrosion application [J]. Prog. Org. Coat., 2023, 174: 107244
|
| [40] |
Xie C, Jia Y, Xue M S, et al. Anti-corrosion and self-healing behaviors of waterborne polyurethane composite coatings enhanced via chitosan-modified graphene oxide and phosphate intercalated hydrotalcite [J]. Prog. Org. Coat., 2022, 168: 106881
|
| [41] |
Álvarez D, Collazo A, Hernández M, et al. Characterization of hybrid sol-gel coatings doped with hydrotalcite-like compounds to improve corrosion resistance of AA2024-T3 alloys [J]. Prog. Org. Coat., 2010, 68: 91
|
| [42] |
Chen C L, He Y, Xiao G Q, et al. Synergistic effect of graphene oxide@phosphate-intercalated hydrotalcite for improved anti-corrosion and self-healable protection of waterborne epoxy coating in salt environments [J]. J. Mater. Chem., 2019, 7C: 2318
|
| [43] |
Wang Z H, Wang C J, Fan W H, et al. A novel fly ash bifunctional filler for epoxy coating with long-term anti-corrosion performance under harsh conditions [J]. Chem. Eng. J., 2022, 430: 133164
doi: 10.1016/j.cej.2021.133164
|
| [44] |
Yasakau K A, Kuznetsova A, Kallip S, et al. A novel bilayer system comprising LDH conversion layer and sol-gel coating for active corrosion protection of AA2024 [J]. Corros. Sci., 2018, 143: 299
doi: 10.1016/j.corsci.2018.08.039
|
| [45] |
Wang Y B, Zhang Y S, Zhou B T, et al. In-situ observation of the growth behavior of ZnAl layered double hydroxide film using EQCM [J]. Mater. Des., 2019
|
| [46] |
Wang Y, Wei D B, Yu J, et al. Effects of Al2O3 Nano-additive on performance of micro-arc oxidation coatings formed on AZ91D Mg alloy [J]. J. Mater. Sci. Technol., 2014, 30: 984
doi: 10.1016/j.jmst.2014.03.006
|
| [47] |
Ganborena L, Vega J M, Özkaya B, et al. AN SKP and EIS study of microporous nickel-chromium coatings in copper containing electrolytes [J]. Electrochim. Acta, 2019, 318: 683
doi: 10.1016/j.electacta.2019.05.108
|
| [48] |
Zhang Y G, Chen Y L, Bian G X, et al. Electrochemical behavior and corrosion mechanism of anodized 7B04 aluminum alloy in acid NaCl environments [J]. J. Alloy. Compd., 2021, 886: 161231
doi: 10.1016/j.jallcom.2021.161231
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|