Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (4): 299-305    DOI: 10.11902/1005.4537.2018.137
  综合评述 本期目录 | 过刊浏览 |
涂层自修复技术研究进展
张勇(),樊伟杰,张泰峰,王安东,陈跃良
海军航空大学青岛校区 航空机械工程与指挥系 青岛 266041
Review of Intelligent Self-healing Coatings
ZHANG Yong(),FAN Weijie,ZHANG Taifeng,WANG Andong,CHEN Yueliang
Aeronautical Machinery Engineering and Command Department, Qingdao Branch of Naval Aeronautical University, Qingdao 266041, China
全文: PDF(2319 KB)   HTML
摘要: 

针对目前智能自修复涂层中研究较多的液芯/中空纤维技术、微胶囊自修复技术、可逆反应技术以及形状记忆技术,分别介绍了不同自修复技术的作用原理、技术关键及其应用优势,指出了把多种技术联合应用实现协同自修复将成为进一步的研究方向。

关键词 自修复技术微胶囊可逆反应形状记忆    
Abstract

The present research on technologies for intelligent self-healing coatings, including liquid core/hollow fiber technology, microcapsule self-healing technology, reversible reaction technology as well as shape memory technology, is discussed. Based on that, the different principle and key issue of self-healing technologies were pointed out. Synergistical combination of various self-healing techniques would become the direction of further research.

Key wordsself-healing technique    microcapsule    reversible reaction    shape memory
收稿日期: 2018-09-27     
ZTFLH:  TU56  
通讯作者: 张勇     E-mail: zhangyong308@126.com
Corresponding author: Yong ZHANG     E-mail: zhangyong308@126.com
作者简介: 张勇,男,1981年生,硕士

引用本文:

张勇,樊伟杰,张泰峰,王安东,陈跃良. 涂层自修复技术研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 299-305.
Yong ZHANG, Weijie FAN, Taifeng ZHANG, Andong WANG, Yueliang CHEN. Review of Intelligent Self-healing Coatings. Journal of Chinese Society for Corrosion and protection, 2019, 39(4): 299-305.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.137      或      https://www.jcscp.org/CN/Y2019/V39/I4/299

图1  液芯/中空纤维自修复示意图[1]
图2  微胶囊自修复示意图[2]
[1] GuiT J, LiuX Y. Self- healing materials and their aplication in coatings [J]. Modern Paint Fish., 2007, 10(12): 29
[1] (桂泰江, 刘希燕. 自修复材料及在涂料中的应用 [J]. 现代涂料与涂装, 2007, 10(12): 29)
[2] BleayS M, LoaderC B, HawyesV J, et al. A smart repair system for polymer matrix composites [J]. Composites, 2001, 32A: 1767
[3] KousourakisA, MouritzA P. The effect of self-healing hollow fibres on the mechanical properties of polymer composites [J]. Smart Mater. Struct., 2010, 19: 085021
[4] ZhangF. Research on the repairing technology and materials for concrete cracks [D]. Daqing: Daqing Petroleum Institute, 2009
[4] (张芳. 混凝土裂缝修复技术及材料的研究 [D]. 大庆: 大庆石油学院, 2009)
[5] XuJ W. Preparation and performance of hollow fiber implanted self-healing epoxy matrix composite [D]. Zhenjiang: Jiangsu University, 2012
[5] (许君尉. 中空纤维埋植型自修复环氧复合材料的制备及性能研究 [D]. 镇江: 江苏大学, 2012)
[6] GhoshS K. Self-Healing Materials: Fundamentals, Design Strategies, and Applications [M]. Weinheim: Wiley-VCH, 2008: 1
[7] YangY J, ZhangH, ZhangJ, et al. The experiment study of fracture mechanics on self-healing composite material containing microcapsules [J]. Mater. Rev., 2007, 21(1): 143
[7] (杨艳娟, 张恒, 张军等. 微胶囊自修复复合材料断裂力学实验研究 [J]. 材料导报, 2007, 21(1): 143)
[8] WhiteS R, SottosN R, GeubelleP H, et al. Autonomic healing of polymer composites [J]. Nature, 2001, 409: 794
[9] KumarA, StephensonL D, MurrayJ N. Self-healing coatings for steel [J]. Prog. Org. Coat., 2006, 55: 244
[10] ChoiH, KimK Y, ParkJ M. Encapsulation of aliphatic amines into nanoparticles for self-healing corrosion protection of steel sheets [J]. Prog. Org. Coat., 2013, 76: 1316
[11] FereidoonA, AhangariM G, JahanshahiM. Effect of nanoparticles on the morphology and thermal properties of self-healing poly (urea-formaldehyde) microcapsules [J]. J. Polym. Res., 2013, 20: 151
[12] TripathiM, Rahamtullah, KumarD, et al. Influence of microcapsule shell material on the mechanical behavior of epoxy composites for self-healing applications [J]. J. Appl. Polym. Sci., 2014, 131: 40572
[13] YabukiA, KawashimaA, FathonaI W. Self-healing polymer coatings with cellulose nanofibers served as pathways for the release of a corrosion inhibitor [J]. Corros. Sci., 2014, 85: 141
[14] ChowdhuryR A, HosurM V, NuruddinM, et al. Self-healing epoxy composites: Preparation, characterization and healing performance [J]. J. Mater. Res. Technol., 2015, 4: 33
[15] ThakurV K, KesslerM R. Self-healing polymer nanocomposite materials: A review [J]. Polymer, 2015, 69: 369
[16] TianW. Study on the self-healing polymer material with microcapsulated healing agent [D]. Shanghai: Donghua University, 2005
[16] (田薇. 基于微胶囊技术的自修复材料的研究 [D]. 上海: 东华大学, 2005)
[17] DangX D, ZhangH, HeY J. Study of capsuling self-repairing smart composites [J]. Mater. Rev., 2005, 19(1): 30
[17] (党旭丹, 张恒, 贺跃进. 胶囊型自修复智能复合材料研究 [J]. 材料导报, 2005, 19(1): 30)
[18] HaoH Y. Synthetic and characterization of microcapsules for self-healing polymer composite [D]. Harbin: Harbin Institute of Technology, 2007
[18] (郝焕英. 复合材料自修复用微胶囊的制备及性能表征 [D]. 哈尔滨: 哈尔滨工业大学, 2007)
[19] HuH L. Study on surface modification of microcapsules in self-healing polymer-based composites [D]. Harbin: Harbin Institute of Technology, 2008
[19] (胡宏林. 聚合物基复合材料自修复用微胶囊表面改性的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2008)
[20] XingR Y, ZhangQ Y, AiQ S, et al. Preparation and properties research of self-healing microcapsules of reactive ethylene silicone oil/poly (urea-formaldehyde) [J]. Mater. Rev., 2009, 23(10): 87
[20] (邢瑞英, 张秋禹, 艾秋实等. 反应性乙烯基硅油/聚脲甲醛自修复微胶囊的制备 [J]. 材料导报, 2009, 23(10): 87)
[21] WangL T, DengL P, ZhangD W, et al. Shape memory composite (SMC) self-healing coatings for corrosion protection [J]. Prog. Org. Coat., 2016, 97: 261
[22] LuoY P. Synthesis and application of self-repairing microcapsules [D]. Guangzhou: South China University of Technology, 2011
[22] (罗永平. 自修复微胶囊的合成与应用研究 [D]. 广州: 华南理工大学, 2011)
[23] YanY, LuoY P, ZhangH P. Preparation and characterization of microcapsules for self-healing material [J]. Mater. Rev., 2011, 25(2): 30
[23] (鄢瑛, 罗永平, 张会平. 自修复微胶囊的制备与表征 [J]. 材料导报, 2011, 25(2): 30)
[24] ZhaoP. Synthesis and properties of self-healing microcapsules for metallic anticorrosive coating [D]. Guangzhou: South China University of Technology, 2012
[24] (赵鹏. 金属防腐涂料自修复微胶囊的合成与性能研究 [D]. 广州: 华南理工大学, 2012)
[25] YuanY C, RongM Z, ZhangM Q. Preparation and characterization of poly (melamine-formaldehyde) walled microcapsules containing epoxy [J]. Acta Polym. Sin., 2008, (5): 472
[25] (袁彦超, 容敏智, 章明秋. 三聚氰胺-甲醛树脂包裹环氧树脂微胶囊的制备及表征 [J]. 高分子学报, 2008, (5): 472)
[26] WangH P, RongM Z, ZhangM Q. Self-healing polymers and polymer-based composites containing microcapsules [J]. Prog. Chem., 2010, 22: 2397
[26] (汪海平, 容敏智, 章明秋. 微胶囊填充型自修复聚合物及其复合材料 [J]. 化学进展, 2010, 22: 2397)
[27] ZhangH R, WangJ X, LiuX X, et al. High performance self-healing epoxy/polyamide protective coating containing epoxy microcapsules and polyaniline nanofibers for mild carbon steel [J]. Ind. Eng. Chem. Res., 2013, 52: 10172
[28] WangW, XuL K, LiX B, et al. Self-healing properties of protective coatings containing isophorone diisocyanate microcapsules on carbon steel surfaces [J]. Corros. Sci., 2014, 80: 528
[29] WangW, XuL K, SunH Y, et al. Spatial resolution comparison of AC-SECM with SECM and their characterization of self-healing performance of hexamethylene diisocyanate trimer microcapsule coatings [J]. J. Mater. Chem., 2015, 3A: 5599
[30] FanW, ZhangY, LiW, et al. Multi-level self-healing ability of shape memory polyurethane coating with Microcapsules by induction heating [J]. Chem. Eng. J., 2019, 368: 1033
[31] WangX, WangW, LiuA, et al. Self-healing and anti-corrosion performances of 1, 2, 4-Triazole modified nano-silica hydrogels [J]. Colloid Interface Sci. Commun., 2018, 27: 11
[32] LiuX, LiW, WangW, et al. Synthesis and characterization of pH-responsive mesoporous chitosan microspheres loaded with sodium phytate for smart water-based coatings [J]. Mater. Corros., 2018, 3: 1
[33] LiT T, WangR, LiuX. Current research on composites self-healed by microcapsules [J]. Mater. Rev., 2010, 24(17): 57
[33] (李婷婷, 王瑞, 刘星. 微胶囊自修复复合材料的研究进展 [J]. 材料导报, 2010, 24(17): 57)
[34] FengJ Z, MingY Q, ZhangY F, et al. Progress of research on encapsuled isocyanate self-healing polymeric materials [J]. Chem. Ind. Eng. Prog., 2016, 35: 175
[34] (冯建中, 明耀强, 张宇帆等. 异氰酸酯胶囊型自修复高分子材料研究进展 [J]. 化工进展, 2016, 35: 175)
[35] YeS N, WangP, SunY C, et al. Research advances in microcapsuled self-healing coatings materials [J]. Surf. Technol., 2016, 45(6): 91
[35] (叶三男, 王培, 孙阳超等. 微胶囊填充型自修复涂层材料研究进展 [J]. 表面技术, 2016, 45(6): 91)
[36] ChenY L, WangC G, ZhangY, et al. Coating corrosion failure analysis and influence of titanium-steel bolted lap joints [J]. Acta Aeronaut. Astronaut. Sin., 2016, 37: 3528
[36] (陈跃良, 王晨光, 张勇等. 钛-钢螺栓搭接件涂层腐蚀失效分析及影响 [J]. 航空学报, 2016, 37: 3528)
[37] ZhangY, ChenY L, WangC G. Study on galvanic corrosion of aluminum alloy related joint in simulated coastal wet atmosphere [J]. Mater. Rev., 2016, 30(10): 152
[37] (张勇, 陈跃良, 王晨光. 模拟沿海大气环境下铝合金搭接件电偶腐蚀行为研究 [J]. 材料导报, 2016, 30(10): 152)
[38] DryC M. Smart-fiber-reinforced matrix composites [P]. United States Patent, 5803963, 1998)
[39] ChenX X, DamM A, OnoK, et al. A thermally re-mendable cross-linked polymeric material [J]. Science, 2002, 295: 1698
[40] ChenX X, WudlF, MalA K, et al. New thermally remendable highly cross-linked polymeric materials [J]. Macromolecules, 2003, 36: 1802
[41] AdzimaB J, KloxinC J, BowmanC N. Externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating [J]. Adv. Mater., 2010, 22: 2784
[42] AdzimaB J, AguirreH A, KloxinC J, et al. Rheological and chemical analysis of reverse gelation in a covalently cross-linked Diels-Alder polymer network [J]. Macromolecules, 2008, 41: 9112
[43] DuX C. Study on the preparation and the self-healing properties of the cross-linked polyurethane based on Diels-Alder reaction [D]. Qingdao: Qingdao University of Science and Technology, 2016
[43] (杜秀才. 基于Diels-Alder反应的交联聚氨酯的制备与自修复性能的研究 [D]. 青岛: 青岛科技大学, 2016)
[44] LiuY L, HsiehC Y. Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds [J]. J. Polym. Sci., 2006, 44A: 905
[45] WatanabeM, YoshieN. Synthesis and properties of readily recyclable polymers from bisfuranic terminated poly (ethylene adipate) and multi-maleimide linkers [J]. Polymer, 2006, 47: 4946
[46] YoshieN, WatanabeM, ArakiH, et al. Thermo-responsive mending of polymers crosslinked by thermally reversible covalent bond: Polymers from bisfuranic terminated poly (ethylene adipate) and tris-maleimide [J]. Polym. Degrad. Stabil., 2010, 95: 826
[47] KavithaA A, SinghaN K. A tailor-made polymethacrylate bearing a reactive diene in reversible Diels-Alder reaction [J]. J. Polym. Sci., 2007, 45A: 4441
[48] KavithaA A, SinghaN K. "Click chemistry" in tailor-made polymethacrylates bearing reactive furfuryl functionality: A new class of self-healing polymeric material [J]. ACS Appl. Mater. Interfaces, 2009, 1: 1427
[49] LiuY L, HsiehC Y, ChenY W. Thermally reversible cross-linked polyamides and thermo-responsive gels by means of Diels-Alder reaction [J]. Polymer, 2006, 47: 2581
[50] ZhangY C, BroekhuisA A, PicchioniF. Thermally self-healing polymeric materials: The next step to recycling thermoset polymers? [J]. Macromolecules, 2009, 42: 1906
[51] ToncelliC, De ReusD C, PicchioniF, et al. Properties of reversible Diels-Alder furan/maleimide polymer networks as function of crosslink density [J]. Macromol. Chem. Phys., 2012, 213: 157
[52] OkhayN, MignardN, JegatC, et al. Diels-Alder thermoresponsive networks based on high maleimide-functionalized urethane prepolymers [J]. Des. Monom. Polym., 2013, 16: 475
[53] VarganiciC D, UrsacheO, GainaC, et al. Synthesis and characterization of a new thermoreversible polyurethane network [J]. Ind. Eng. Chem. Res., 2013, 52: 5287
[54] VarganiciC D, UrsacheO, GainaC, et al. Studies on new hybrid materials prepared by both Diels-Alder and Michael addition reactions [J]. J. Therm. Anal. Calorim., 2013, 111: 1561
[55] DemetgülC, Delikanl?A, Sar?b?y?kO Y, et al. Schiff base polymers obtained by oxidative polycondensation and their Co(II), Mn(II) and Ru(III) complexes: Synthesis, characterization and catalytic activity in epoxidation of styrene [J]. Des. Monom. Polym., 2012, 15: 75
[56] PlaistedT A, Nemat-NasserS. Quantitative evaluation of fracture, healing and re-healing of a reversibly cross-linked polymer [J]. Acta Mater., 2007, 55: 5684
[57] VernonL B, VernonH M. Process of manufacturing articles of thermoplastic synthetic resins [P]. United States Patent, 2234993, 1941)
[58] QiC, LiuP. Structure and mechanical properties of shape memory polyurethane based on hyperbranched polyesters [J]. Polym. Bull., 2006, 57(6): 889
[59] HuJ L, FanH J. Thermal-sensitive intelligent polymers and their application [J]. J. Text. Res., 2005, 26(6): 122
[59] (胡金莲, 范浩军. 智能热敏形状记忆聚合物及其应用 [J]. 纺织学报, 2005, 26(6): 122)
[60] HuJ L, YangZ H. Research and application of shape memory polymer [J]. Dye. Finish., 2004, 30(3): 44
[60] (胡金莲, 杨卓鸿. 形状记忆高分子材料的研究及应用 [J]. 印染, 2004, 30(3): 44)
[61] SongB, ZhuG M, DengD. Applications of shape memory polyurethane [J]. Chem. Ind. Eng., 2007, 24: 453
[61] (宋斐, 朱光明, 邓登. 形状记忆聚氨酯及其应用 [J]. 化学工业与工程, 2007, 24: 453)
[62] HuJ L, FanH J. Water-based block polyurethane, method of preparation and waterproof, warm and moisture permeable materials prepared therefrom [P]. Chin Pat, 200410002551.8, 2005
[62] (胡金莲, 范浩军. 水基嵌段聚氨酯、其制法及由其制备的防水、保暖、透湿性材料 [P]. 中国专利, 200410002551.8, 2005)
[63] JorcinJ B, ScheltjensG, van IngelgemY, et al. Investigation of the self-healing properties of shape memory polyurethane coatings with the ‘odd random phase multisine’ electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2010, 55: 6195
[64] González-GarcíaY, MolJ M C, MuselleT, et al. A combined mechanical, microscopic and local electrochemical evaluation of self-healing properties of shape-memory polyurethane coatings [J]. Electrochim. Acta, 2011, 56: 9619
[65] NjiJ, LiG Q. Damage healing ability of a shape-memory-polymer-based particulate composite with small thermoplastic contents [J]. Smart Mater. Struct., 2012, 21: 025011
[66] LiG Q, UppuN. Shape memory polymer based self-healing syntactic foam: 3-D confined thermomechanical characterization [J]. Compos. Sci. Technol., 2010, 70: 1419
[67] LuoX F, MatherP T. Shape memory assisted self-healing coating [J]. ACS Macro Lett., 2013, 2: 152
[68] LutzA, van den BergO, Van DammeJ, et al. A shape-recovery polymer coating for the corrosion protection of metallic surfaces [J]. ACS Appl. Mater. Interfaces, 2014, 7: 175
[69] MoadG, RizzardoE, ThangS H. ChemInform abstract: Living radical polymerization by the RAFT process & mdash; A second update [J]. Cheminform, 2009, 58(6): 379
[70] CrallM D, KellerM W. Targeted self-healing by magnetically guiding microcapsules [J]. ACS Appl. Mater. Interfaces, 2017, 9: 6504
[71] FanW J, LiW H, ZhangY, et al. Cooperative self-healing performance of shape memory polyurethane and Alodine-containing microcapsules [J]. RSC Adv., 2017, 7: 46778
[1] 李西娟, 李澄, 王加余, 张学德, 尹成勇, 郑顺丽, 徐云玲. 含疏水性液体微胶囊复合铜镀层的制备与性能研究[J]. 中国腐蚀与防护学报, 2013, 33(4): 311-316.
[2] 李年杏; 王俭秋; 韩恩厚; 柯伟 . 温度、pH和Cl-浓度对NiTi形状记忆合金电化学行为的影响[J]. 中国腐蚀与防护学报, 2006, 26(4): 202-206 .
[3] 贾方; 王佳 . 油田系统微胶囊缓蚀剂研究与应用进展[J]. 中国腐蚀与防护学报, 2006, 26(4): 251-256 .