Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 220-232     CSTR: 32134.14.1005.4537.2025.063      DOI: 10.11902/1005.4537.2025.063
  研究报告 本期目录 | 过刊浏览 |
咪唑啉衍生物与硫脲对X65钢在惰性沉积物垢下腐蚀的缓蚀机理研究
盖明月1, 张静1,2(), 王崇坤1, 李秀美1
1.中国海洋大学化学化工学院 青岛 266100
2.中国海洋大学 海洋化学理论与工程技术教育部重点实验室 青岛 266100
Corrosion Inhibition Performance of Imidazoline Derivatives and Thiourea on X65 Steel Under Inert Deposits Scale in an Artificial CO2 Saturated Oilfield Produced Water
GAI Mingyue1, ZHANG Jing1,2(), WANG Chongkun1, LI Xiumei1
1.College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
2.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
引用本文:

盖明月, 张静, 王崇坤, 李秀美. 咪唑啉衍生物与硫脲对X65钢在惰性沉积物垢下腐蚀的缓蚀机理研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 220-232.
Mingyue GAI, Jing ZHANG, Chongkun WANG, Xiumei LI. Corrosion Inhibition Performance of Imidazoline Derivatives and Thiourea on X65 Steel Under Inert Deposits Scale in an Artificial CO2 Saturated Oilfield Produced Water[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 220-232.

全文: PDF(14991 KB)   HTML
摘要: 

针对在CO2饱和油田采出水中由于惰性沉积物引起的X65钢的垢下腐蚀问题,通过电化学和表面分析等手段研究了烷基咪唑啉(IM)、硫脲(TU)及两者复配缓蚀剂(TU/IM)对SiO2和CaCO3惰性沉积物下X65钢的缓蚀行为。结果表明,在两种惰性沉积物下,缓蚀效率均为η (TU/IM) > η (TU) > η (IM)。IM难以在两种沉积物下形成连续的保护性缓蚀剂膜,且会加速SiO2垢下金属的腐蚀,缓蚀性能较差。TU是抑制阴极和阳极反应的混合缓蚀剂,TU中的S原子与Fe原子的空d轨道形成配位化学键,成为富电子区,形成的Fe—S键增强了缓蚀剂膜层的稳定性与保护性。IM与TU复配后形成良好的协同作用,TU依靠良好的扩散性和吸附性能形成了第一层吸附膜,IM则提供疏水链成为第二层吸附膜,因此具有更优异的缓蚀效果。

关键词 咪唑啉衍生物惰性沉积物垢下腐蚀协同作用吸附膜    
Abstract

To solve the problem of under-deposit corrosion of X65 steel in CO2-saturated oilfield-produced water, the corrosion inhibition performance of alkyl imidazolines (IM), thiourea (TU) and their compound corrosion inhibitors (TU/IM) on X65 steel under SiO2 and CaCO3 inert deposits was investigated using electrochemical analysis and surface analysis. The results show that the corrosion inhibition efficiency η of the three inhibitors may be ranked as η (TU/IM) > η (TU) > η (IM). When adopting IM as inhibitor, the formation of a continuous protective corrosion inhibitor film is difficulty on the steel surface under the two type scales of inert deposits, while the corrosion of metal under the SiO2 deposits is accelerated, thus IM is poor in corrosion inhibition performance. For TU as a mixed-type inhibitor, both the cathodic and anodic reactions are suppressed, which may be due to that the S atoms of TU tend to coordinate with the empty d-orbitals of Fe atoms, thereby generate coordination chemical bonds, resulting in an electrons rich band in this region, which in turn enhance the stability and protection ability of the formed inhibitor film. Whereas, the TU/IM combination inhibitor demonstrate excellent synergistic inhibition effect, which may be ascribed to that TU initially formed a primary adsorption film on the steel through its superior diffusivity and adsorption capacity, while IM subsequently contributed hydrophobic chains to establish a secondary adsorption film, this dual-layered structure significantly enhances the corrosion inhibition effectiveness.

Key wordsimidazoline derivatives    inert deposits    under-deposit corrosion    synergistic effects    adsorption films
收稿日期: 2025-02-25      32134.14.1005.4537.2025.063
ZTFLH:  TG174  
基金资助:山东省自然科学基金(ZR2019MEM003)
通讯作者: 张静,E-mail:dmh217@ouc.edu.cn,研究方向为海洋腐蚀与防护
作者简介: 盖明月,女,1999年生,硕士生
图1  覆盖SiO2和CaCO3惰性沉积物的工作电极
图2  IM和TU的分子结构式
图3  以覆盖SiO2和CaCO3惰性沉积物的X65钢为工作电极的电化学测试装置示意图
图4  SiO2垢下电极在不同浓度的IM缓蚀溶液中浸泡72 h的EIS谱图
图5  用于拟合EIS的等效电路图
ConcentrationRsCdlndlRctη
/ mg·L-1/ Ω·cm2/ μF·cm-2/ Ω·cm2/ %
Blank23.692380.774470-
50115.52480.773019-32.46
10067.092670.772944-33.39
20039.823260.7746393.643
50026.052560.86542617.62
表1  SiO2垢下电极在不同浓度的IM缓蚀剂溶液中的EIS谱拟合数据
图6  SiO2垢下电极在TU/IM不同复配比例缓蚀溶液中浸泡72 h的EIS谱图
Mass ratiosRsCdlndlRctηEIS
/ Ω·cm2/ μF·cm-2/ Ω·cm2/ %
Blank92.69135.00.671584-
TU:IM = 1:019.1858.80.913774588.15
TU:IM = 2:130.4961.30.879272095.17
TU:IM = 1:132.27130.00.8810072095.56
TU:IM = 1:243.49303.00.73720837.98
TU:IM = 0:127.14280.00.762940-52.04
表2  SiO2垢下电极在TU/IM不同复配比例缓蚀溶液中浸泡72 h的EIS谱拟合结果
图7  25 ℃下垢下电极在CO2饱和的空白溶液以及含100 mg/L缓蚀溶液中浸泡72 h后的动电位极化曲线
DepositsInhibitorβa / mV·dec-1-βc / mV·dec-1Icorr / μA·cm-2Ecorrvs. SCE / VηPOT / %
SiO2Blank75.95194.83.01-0.760-
IM68.03192.74.53-0.744-50.49
TU128.40108.60.82-0.75672.65
TU/IM168.4079.70.30-0.80090.10
CaCO3Blank70.48147.113.11-0.750-
IM56.19165.15.61-0.72057.20
TU55.21151.40.99-0.69092.45
TU/IM164.20101.30.28-0.74097.81
表3  图7动电位极化曲线拟合结果
图8  SiO2垢下电极在空白溶液及不同缓蚀溶液中浸泡不同时间后的EIS谱图
Inhibitort / hRs / Ω·cm2Cdl / μF·cm-2ndlRct / Ω·cm2L / H·cm-2
Blank1292.691350.671584706
2447.212510.661339600
3641.222500.711661-
4834.682450.732227-
6032.042370.742415-
7223.692380.774420-
IM1218.342840.681055716
2418.472760.691092551
3611.682890.711678-
4821.323050.692544-
6011.152790.732920-
7227.142800.762940-
TU1227.832560.768554501
2421.571660.856972-
3621.601610.8710830-
4820.481570.8717212-
6019.46630.8821170-
7219.18590.8937745-
TU/IM1262.231730.831629-
2457.861820.8511888-
3647.481670.8624370-
4839.721460.8765057-
6036.811430.8788136-
7232.271300.88100720-
表4  SiO2沉积物覆盖下的电极在空白溶液及缓蚀溶液中浸泡不同时间的EIS谱拟合结果
图9  CaCO3垢下电极在空白溶液及不同缓蚀溶液中浸泡不同时间后的EIS谱图
Inhibitort / hRs / Ω·cm2Cdl / μF·cm-2ndlRct / Ω·cm2L / H·cm-2
Blank1217.961660.661053290
2446.312940.661603600
3617.721730.721021-
4817.901830.731021-
6017.582040.731018-
7217.822040.751031-
IM1213.913780.761107915
2410.673700.771472784
3613.313610.771600523
4813.263220.771641-
6013.103290.781784-
7213.153230.782385-
TU1220.222500.747765-
2420.692260.768618-
3619.772100.779139-
4820.672050.789607-
6021.141840.8020391-
7220.701730.8128174-
TU/IM1215.661290.796682-
2415.461720.826665-
3615.021780.819924-
4814.661600.8162240-
6014.321550.8178113-
7214.451400.82117130-
表5  CaCO3 沉积物覆盖下的电极在空白溶液及缓蚀溶液中浸泡不同时间的EIS谱拟合结果
图10  SiO2垢下电极在空白溶液及不同缓蚀溶液中浸泡72 h后腐蚀形貌
InhibitorFeS
Blank58.16-
IM69.37-
TU72.130.36
TU/IM71.510.46
表6  SiO2垢下电极在空白溶液及不同缓蚀溶液中浸泡72 h后表面EDS结果
图11  CaCO3垢下电极在空白溶液及不同缓蚀溶液中浸泡72 h后腐蚀形貌
InhibitorFeS
Blank46.73-
IM27.35-
TU62.550.34
TU/IM72.060.49
表7  CaCO3垢下电极在空白溶液及不同缓蚀溶液中浸泡72 h后表面EDS结果 (atomic fraction / %)
图12  SiO2垢下电极在不同缓蚀溶液中浸泡72 h后的XPS谱图
图13  CaCO3垢下电极在不同缓蚀溶液中浸泡72 h后的XPS谱图
图14  3种缓蚀剂对 SiO2 和 CaCO3 垢下X65碳钢的缓蚀机理示意图
[1] Yang T, Xu L, Wang J C, et al. Research progress on CO2 corrosion and protective countermeasures for oil casing [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1134
[1] 杨 涛, 许 磊, 王建春 等. 油套管CO2腐蚀和防护研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1134
[2] Pang L, Wang Z B, Emori W, et al. Under-deposit corrosion of carbon steel beneath full coverage of CaCO3 deposit layer under different atmospheres [J]. J. Mater. Eng. Perform., 2021, 30: 7552
doi: 10.1007/s11665-021-05926-7
[3] Sun M, Cui W, Lin N. Corrosion analysis of shale gas downhole tubing under the synergistic action of multiple factors [J]. J. Phys.: Conf. Ser., 2023, 2539: 012039
[4] Zhang G A, Yu N, Yang L Y, et al. Galvanic corrosion behavior of deposit-covered and uncovered carbon steel [J]. Corros. Sci., 2014, 86: 202
doi: 10.1016/j.corsci.2014.05.011
[5] Guo L, Obot I B, Zheng X W, et al. Theoretical insight into an empirical rule about organic corrosion inhibitors containing nitrogen, oxygen, and sulfur atoms [J]. Appl. Surf. Sci., 2017, 406: 301
doi: 10.1016/j.apsusc.2017.02.134
[6] Zhang C, Lu Y, Zhao J M. Synergistic inhibition effect of imidazoline ammonium salt and three cationic surfactants in H2S/CO2 brine solution [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 237
[6] 张 晨, 陆 原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2020, 40: 237
[7] Ouyang J L, Wang X X, Han X, et al. Inhibition of imidazolines on CO2 induced corrosion of carbon steel in oil and water alternatively wetting conditions [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 707
[7] 欧阳嘉露, 王茜茜, 韩 霞 等. 油水交替环境中咪唑啉对CO2腐蚀的抑制作用研究 [J]. 中国腐蚀与防护学报, 2024, 44: 707
doi: 10.11902/1005.4537.2023.209
[8] Cruz J, Martínez-Aguilera L M R, Salcedo R, et al. Reactivity properties of derivatives of 2-imidazoline: An ab initio DFT study [J]. Int. J. Quant. Chem., 2001, 85: 546
doi: 10.1002/qua.v85:4/5
[9] Bai Y L, Shen G L, Qin Q Y, et al. Effect of thiourea imidazoline quaternary ammonium salt corrosion inhibitor on corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 60
[9] 白云龙, 沈国良, 覃清钰 等. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 60
doi: 10.11902/1005.4537.2020.015
[10] Ni X L, Li H, Li Y F, et al. Corrosion protection of imidazoline corrosion inhibitors with different carbon chain length in CO2 driving oil environment [J]. Surf. Technol., 2023, 52(8): 278
[10] 倪小龙, 李 欢, 李云飞 等. 不同碳链长度咪唑啉缓蚀剂在CO2驱采油环境中的腐蚀防护作用 [J]. 表面技术, 2023, 52(8): 278
[11] Fan B M, Zhu H T, Li H, et al. Penetration of imidazoline derivatives through deposited scale for inhibiting the under-deposit corrosion of pipeline steel [J]. Corros. Sci., 2024, 235: 112209
doi: 10.1016/j.corsci.2024.112209
[12] Katerina K, Gubner R. Development of standard test method for investigation of under-deposit corrosion in carbon dioxide environment and its application in oil and gas industry [A]. Corrosion 2010 [C]. San Antonio, Texas, 2010: NACE-10331
[13] Tan Y J, Fwu Y, Bhardwaj K. Electrochemical evaluation of under-deposit corrosion and its inhibition using the wire beam electrode method [J]. Corros. Sci., 2011, 53: 1254
doi: 10.1016/j.corsci.2010.12.015
[14] Abd Karim M A, Che Ismail M, Abd Karim M F. Performance of corrosion inhibitor with sand deposit in CO2 environment [J]. ARPN J. Eng. Appl. Sci., 2016, 11: 12103
[15] Yang J, Wang Z B, Qiao Y X, et al. Synergistic effects of deposits and sulfate reducing bacteria on the corrosion of carbon steel [J]. Corros. Sci., 2022, 199: 110210
doi: 10.1016/j.corsci.2022.110210
[16] Pandarinathan V, Lepková K, Bailey S I, et al. Impact of mineral deposits on CO2 corrosion of carbon steel [A]. Corrosion 2013 [C]. Orlando, Florida, 2013: NACE-2013-2579
[17] Pandarinathan V, Lepková K, Bailey S I, et al. Evaluation of corrosion inhibition at sand-deposited carbon steel in CO2-saturated brine [J]. Corros. Sci., 2013, 72: 108
doi: 10.1016/j.corsci.2013.03.013
[18] He S S, Han X F, Lai X X, et al. Research progress on corrosion inhibitor and inhibition mechanism against CO2 corrosion of carbon steel [J]. Surf. Technol., 2023, 52(7): 117
[18] 贺莎莎, 韩新福, 赖喜祥 等. 碳钢CO2腐蚀的缓蚀剂策略及缓蚀行为研究进展 [J]. 表面技术, 2023, 52(7): 117
[19] Zhang Y N, Wang T L, Han X, et al. Corrosion of artificial rock layer covered steel electrodes in a CO2 environment: The influence of permeability [J]. Corros. Sci., 2016, 105: 190
doi: 10.1016/j.corsci.2016.01.017
[20] Zhu T Z, Wang L D, Sun W, et al. The role of corrosion inhibition in the mitigation of CaCO3 scaling on steel surface [J]. Corros. Sci., 2018, 140: 182
doi: 10.1016/j.corsci.2018.06.003
[21] Wang Z B, Hu H X, Zheng Y G, et al. Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid [J]. Corros. Sci., 2016, 103: 50
doi: 10.1016/j.corsci.2015.11.003
[22] Wang Z B, Hu H X, Zheng Y G. Evaluation of the dissolved oxygen-related electrochemical behavior of pure titanium in acidic fluoride-containing solutions [J]. J. Solid State Electrochem., 2016, 20: 3459
doi: 10.1007/s10008-016-3321-5
[23] Li G C, Lu C Q, Yang W Z, et al. Progress on research of thiourea and derivatives as corrosion inhibitor [J]. Corros. Sci. Prot. Technol., 2001, 13: 169
[23] 李广超, 路长青, 杨文忠 等. 硫脲及其衍生物的缓蚀行为研究进展 [J]. 腐蚀科学与防护技术, 2001, 13: 169
[24] Obot I B, Solomon M M, Umoren S A, et al. Progress in the development of sour corrosion inhibitors: Past, present, and future perspectives [J]. J. Ind. Eng. Chem., 2019, 79: 1
doi: 10.1016/j.jiec.2019.06.046
[25] Suarez E M, Machuca L L, Kinsella B, et al. CO2 corrosion inhibitors performance at deposit-covered carbon steel and their adsorption on different deposits [J]. Corrosion, 2019, 75: 1118
doi: 10.5006/3223
[26] Chen Z H, Yang W Z, Xu B, et al. Corrosion behaviors and physical properties of polypyrrole-molybdate coating electropolymerized on carbon steel [J]. Prog. Organ. Coat., 2018, 122: 159
[27] Pang L, Wang Z B, Zheng Y G, et al. On the localised corrosion of carbon steel induced by the in-situ local damage of porous corrosion products [J]. J. Mater. Sci. Technol., 2020, 54: 95
doi: 10.1016/j.jmst.2020.03.041
[28] Obot I B, Sorour A A, Verma C, et al. Key parameters affecting sweet and sour corrosion: Impact on corrosion risk assessment and inhibition [J]. Eng. Fail. Anal., 2023, 145: 107008
doi: 10.1016/j.engfailanal.2022.107008
[29] Peisert H, Chassé T, Streubel P, et al. Relaxation energies in XPS and XAES of solid sulfur compounds [J]. J. Electron. Spectrosc. Relat. Phenom., 1994, 68: 321
doi: 10.1016/0368-2048(94)02129-5
[30] Haque J, Srivastava V, Quraishi M A, et al. Polar group substituted imidazolium zwitterions as eco-friendly corrosion inhibitors for mild steel in acid solution [J]. Corros. Sci., 2020, 172: 108665
doi: 10.1016/j.corsci.2020.108665
[31] Zhang W W, Li H J, Wang M R, et al. Tetrahydroacridines as corrosion inhibitor for X80 steel corrosion in simulated acidic oilfield water [J]. J. Mol. Liq., 2019, 293: 111478
doi: 10.1016/j.molliq.2019.111478
[32] Özcan M, Dehri İ. Electrochemical and quantum chemical studies of some sulphur-containing organic compounds as inhibitors for the acid corrosion of mild steel [J]. Prog. Org. Coat., 2004, 51: 181
doi: 10.1016/j.porgcoat.2004.07.017
[33] Zhang C, Zhao J M. Synergistic inhibition effects of octadecylamine and tetradecyl trimethyl ammonium bromide on carbon steel corrosion in the H2S and CO2 brine solution [J]. Corros. Sci., 2017, 126: 247
doi: 10.1016/j.corsci.2017.07.006
[1] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[2] 李建永, 代殿宇, 钱程, 刁书磊, 刘金山, 路通鑫, 孙勇, 肖凤娟. 不锈钢表面聚苯胺纳米纤维/改性氧化石墨烯/水性环氧复合涂层的制备与防护性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 156-162.
[3] 任莹, 赵会军, 周昊, 张建伟, 刘雯, 杨足膺, 王磊. 粒径和温度对20号钢冲刷腐蚀协同作用的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 508-516.
[4] 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[5] 张天翼,柳伟,范玥铭,李世民,董宝军,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
[6] 杨颖, 林翠, 赵晓斌, 张翼飞. TA2在LiBr溶液中的初期空化腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(6): 540-546.
[7] 陈洁净,鞠虹,孙灿,李霞,刘雲飞. 电化学测试技术在垢下腐蚀中的应用[J]. 中国腐蚀与防护学报, 2017, 37(3): 207-215.
[8] 赵景茂,赵起锋,姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[9] 张漫路,赵景茂. 缓蚀剂协同效应与协同机理的研究进展[J]. 中国腐蚀与防护学报, 2016, 36(1): 1-10.
[10] 赵桐, 赵景茂, 姜瑞景. 流速和碳链长度对咪唑啉衍生物在高压CO2环境中缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 163-168.
[11] 杜楠,舒伟发,王春霞,王帅星,陈庆龙. 一种组合添加剂在碱性无氰镀锌中的作用[J]. 中国腐蚀与防护学报, 2012, 32(3): 251-255.
[12] 王彬;张静;杜敏. 咪唑啉类缓蚀剂对含饱和CO2的模拟油田采出液中Q235-A钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2010, 30(1): 16-20.
[13] 李松梅 王彦卿 刘建华 梁 馨. 氧化亚铁硫杆菌和氧化硫硫杆菌的协同作用对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2009, 29(3): 182-186.
[14] 杨怀玉; 陈家坚; 曹楚南; 曹殿珍 . H2S水溶液中的腐蚀与缓蚀作用机理的研究Ⅷ咪唑啉衍生物H2S溶液中的吸附作用行为[J]. 中国腐蚀与防护学报, 2003, 23(2): 75-78 .
[15] 杨怀玉; 陈家坚; 曹楚南 . H2S水溶液中的腐蚀与缓蚀作用机理的研究Ⅶ.H2S溶液中咪唑啉衍生物对碳钢腐蚀电极过程的影响[J]. 中国腐蚀与防护学报, 2002, 22(6): 321-325 .