Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 207-219     CSTR: 32134.14.1005.4537.2025.085      DOI: 10.11902/1005.4537.2025.085
  研究报告 本期目录 | 过刊浏览 |
ZnAlCe-NO2 水滑石@硅烷涂层的氯离子捕获和响应缓蚀行为
谭敬莎, 郭艺超, 陈俊霖, 盖文峰, 孟国哲()
中山大学化学工程与技术学院 珠海 519082
Chloride Ion Capture and Responsive Corrosion Inhibition Behavior of ZnAlCe-NO2 Hydrotalcite @ Silane Coating
TAN Jingsha, GUO Yichao, CHEN Junlin, GAI Wenfeng, MENG Guozhe()
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
引用本文:

谭敬莎, 郭艺超, 陈俊霖, 盖文峰, 孟国哲. ZnAlCe-NO2 水滑石@硅烷涂层的氯离子捕获和响应缓蚀行为[J]. 中国腐蚀与防护学报, 2026, 46(1): 207-219.
Jingsha TAN, Yichao GUO, Junlin CHEN, Wenfeng GAI, Guozhe MENG. Chloride Ion Capture and Responsive Corrosion Inhibition Behavior of ZnAlCe-NO2 Hydrotalcite @ Silane Coating[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 207-219.

全文: PDF(12798 KB)   HTML
摘要: 

水滑石(LDH)独特的阳离子和阴离子层状结构,赋予层间阴离子易于和环境离子交换的特性,从而使其成为一种优异的无机纳米容器。本研究利用一步共沉淀法制备装载NO2-缓蚀剂的ZnAlCe-NO2 LDH,将其添加到溶胶凝胶硅烷涂层中。涂层服役过程中,除了缺陷处局部水解酸化环境中LDH主板层Ce3+响应释放,对基体金属起到缓蚀作用外,处于高能状态ZnAlCe-NO2 LDH层间的NO2-与渗入涂层中的Cl-亦会自发发生交换响应,不仅将游离的Cl-捕获固定在LDH结构内,同时还会释放层间预先负载的缓蚀剂,增强涂层的防护性能,从而起到“一石二鸟”的作用。在0.05 mol/L NaCl溶液中的电化学测试表明,ZnAlCe-NO2 LDH对碳钢缓蚀效率可达97.57%;与空白溶胶凝胶涂层相比,掺杂2.5 mg/mL ZnAlCe-NO2 LDH的溶胶凝胶涂层的腐蚀防护性能得到了显著提升。

关键词 水滑石离子交换作用缓蚀剂控释溶胶凝胶涂层自修复    
Abstract

The unique lamellar structure of cations and anions in hydrotalcite (LDH) endows the interlayer anions with the characteristic of easy ion exchange with the environment, making it an excellent inorganic nanocontainer. In this study, a corrosion inhibitor ZnAlCe-NO2 LDH loaded with NO2- was prepared by one-step co-precipitation method and which then was added to the sol gel silane coating. It may be reasonably inferred that at defect sites of the coating Ce ions within the LDH lamellae may be response and release where local hydrolysis acidification environment has been generated during the coating service, which then act as a means to inhibit the corrosion of the substrate metal; Meanwhile, the NO2- of high energy state situated between the ZnAlCe-NO2 LDH lamellae and will spontaneously exchange-react with the infiltrated chloride ions (Cl-) in the coating, which result in not only capturing and fixing the free Cl- in the LDH lamellar structure, but also releasing the pre-loaded corrosion inhibitor within the LDH lamellae so that to enhance the protective performance of the coating, just like a Chinese proverb “kill two birds with one stone”. Electrochemical tests in a 0.05 mol/L NaCl solution showed that ZnAlCe-NO2 LDH had a corrosion inhibition efficiency of 97.57% for carbon steel. Compared with the blank sol gel coating, the corrosion protection performance of the sol gel coating doped with 2.5 mg/mL ZnAlCe-NO2 LDH has been significantly improved.

Key wordshydrotalcite    ion exchange    corrosion inhibitor controlled release    sol gel coating    self repair
收稿日期: 2025-03-12      32134.14.1005.4537.2025.085
ZTFLH:  TG174  
基金资助:国家自然科学(52171093);国家重点研发计划(2019YFE0111000)
通讯作者: 孟国哲,E-mail:menggzh3@mail.sysu.edu.cn,研究方向为材料腐蚀与防护
作者简介: 谭敬莎,女,1999年生,硕士生
图1  水滑石及掺杂LDH-NO2-的硅烷溶液溶胶凝胶涂层的制备示意图
图2  ZnAl-LDH和ZnAlCe-NO2 LDH的SEM图、ZnAlCe-NO2 LDH的EDS能谱图,不同水滑石样品的XPS谱图及XRD图,FT-IR图,TG和DTG图以及不同NaCl浓度下,Q235碳钢在空白溶液和添加ZnAlCe-NO2 LDH溶液中的腐蚀电位和低频模值的变化图,ZnAlCe-NO2 LDH水滑石样品的氯离子吸附、缓蚀剂释放曲线
图3  碳钢在添加ZnAlCe-NO2 LDH溶液中的Bode和Nyquist图。碳钢在NaCl (0.05 mol/L)溶液与添加ZnAlCe-NO2 LDH的NaCl (0.05 mol/L)混合溶液中浸泡不同时间后的极化曲线图及EIS拟合的等效电路模型
SampleTime

Rs

/ Ω·cm2

CPEf

/ Y0-1·cm-2·S n )

n

Rf

/ Ω·cm2

Qdl

/ Y0-1·cm-2·S n )

n

Rct

/ Ω·cm2

Rw/ Ω·cm2
Carbon steel1 h110.5---4.039 × 10-40.781.876 × 1035.954 × 10-3
ZnAlCe-NO2 LDH1 h112.9---2.006 × 10-40.821.468 × 1048.688 × 10-3
6 h111.21.871 × 10-40.83125.38.09 × 10-50.831.162 × 1041.133 × 10-3
12 h101.12.234 × 10-40.81134.87.022 × 10-50.901.793 × 1045.202 × 10-3
24 h90.62.861 × 10-40.79120.16.857 × 10-50.981.915 × 1045.750 × 10-3
48 h111.22.718 × 10-40.8078.081.470 × 10-40.941.410 × 1041.600 × 10-3
表1  Q235碳钢在NaCl混合溶液中浸泡不同时间的EIS拟合参数
图4  碳钢分别在0.05 mol/L NaCl溶液、S/LDH-NO2溶液中浸泡24 h后的显微形貌;碳钢分别在0.05 mol/L NaCl空白溶液和S/LDH-NO2溶液中浸泡24 h后的FT-IR图和XRD图谱及ZnAlCe-NO2 LDH样品在NaCl溶液中离子交换前后的XRD图谱
图5  空白溶胶凝胶涂层、ZnAlCe-NO2 LDH掺杂的溶胶凝胶涂层的表面SEM图谱、空白溶胶凝胶涂层截面及能谱图及ZnAlCe-NO2 LDH掺杂的溶胶凝胶涂层截面及能谱图
图6  在0.05 mol/L NaCl溶液中浸泡不同时间后的不同的涂层的Bode图和Nyquist图模型a及等效电路(R(Q(R(QR))))
图7  EIS拟合得到的Rc、Qc、Rct随浸泡时间的变化曲线和低频模值的变化曲线,开路变化曲线及不同涂层样品在NaCl溶液中浸泡6 h后的极化曲线图
图8  空白硅烷涂层(SC)和溶胶凝胶涂层(SC/NO2-LDH2.5)在NaCl溶液中浸泡30 min和90 min后测得的SKP图
图9  掺杂溶胶凝胶涂层的腐蚀防护机理
[1] You Y, Shang C J, Chen L, et al. Investigation on the crystallography of reverted structure and its effect on the properties of low carbon steel [J]. Mater. Sci. Eng., 2012, 546A: 111
[2] Ali Gürten A, Keleş H, Bayol E, et al. The effect of temperature and concentration on the inhibition of acid corrosion of carbon steel by newly synthesized Schiff base [J]. J. Ind. Eng. Chem., 2015, 27: 68
doi: 10.1016/j.jiec.2014.11.046
[3] Ataei S, Khorasani S N, Neisiany R E. Biofriendly vegetable oil healing agents used for developing self-healing coatings: a review [J]. Prog. Org. Coat., 2019, 129: 77
[4] Zhang Y, Liu J H, Li Y D, et al. Enhancement of active anticorrosion via Ce-doped Zn-Al layered double hydroxides embedded in sol-gel coatings on aluminum alloy [J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2017, 32: 1199
doi: 10.1007/s11595-017-1731-6
[5] Karthik N, Lee Y R, Sethuraman M G. Hybrid sol-gel/thiourea binary coating for the mitigation of copper corrosion in neutral medium [J]. Prog. Org. Coat., 2017, 102: 259
[6] Wu L K, Wu J J, Wu W Y, et al. Sol-gel-based coatings for oxidation protection of TiAl alloys [J]. J. Mater. Sci., 2020, 55: 6330
doi: 10.1007/s10853-020-04466-0
[7] Chen H, Shen J, Deng J Z, et al. Sol-gel coatings with hydrothermal hydroxylation as pre-treatment for 2198-T851 corrosion protection performance [J]. App. Surf. Sci., 2020, 508: 145285
doi: 10.1016/j.apsusc.2020.145285
[8] Akbarzadeh S, Paint Y, Olivier M G. A comparative study of different sol-gel coatings for sealing the plasma electrolytic oxidation (PEO) layer on AA2024 alloy [J]. Electrochim. Acta, 2023, 443: 141930
doi: 10.1016/j.electacta.2023.141930
[9] Figueira R B. Hybrid sol-gel coatings for corrosion mitigation: A critical review [J]. Polymers, 2020, 12: 689
doi: 10.3390/polym12030689
[10] Voevodin N N, Grebasch N T, Soto W S, et al. Potentiodynamic evaluation of sol-gel coatings with inorganic inhibitors [J]. Surf. Coat. Technol., 2001, 140: 24
doi: 10.1016/S0257-8972(01)00999-9
[11] Zheludkevich M L, Serra R, Montemor M F, et al. Nanostructured sol-gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3: Corrosion protection performance [J]. Electrochim. Acta, 2005, 51: 208
doi: 10.1016/j.electacta.2005.04.021
[12] Liu Y H, Jin X H, Hu J M. Electrodeposited silica films post-treated with organosilane coupling agent as the pretreatment layers of organic coating system [J]. Corros. Sci., 2016, 106: 127
doi: 10.1016/j.corsci.2016.01.032
[13] Hu C W, Li D F, Guo Y H, et al. Supermolecular layered double hydroxides [J]. Chin. Sci. Bull., 2001, 46: 1061
doi: 10.1007/BF02900678
[14] Guo X X, Zhang F Z, Peng Q, et al. Layered double hydroxide/eggshell membrane: an inorganic biocomposite membrane as an efficient adsorbent for Cr(VI) removal [J]. Chem. Eng. J., 2011, 166: 81
doi: 10.1016/j.cej.2010.10.010
[15] Mir Z M, Bastos A, Gomes C, et al. Numerical and experimental analysis of self-protection in reinforced concrete due to application of Mg-Al-NO2 layered double hydroxides [J]. Adv. Eng. Mater., 2020, 22: 2000398
doi: 10.1002/adem.v22.11
[16] Zheludkevich M L, Poznyak S K, Rodrigues L M, et al. Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor [J]. Corros. Sci., 2010, 52: 602
doi: 10.1016/j.corsci.2009.10.020
[17] Li W H, Liu A, Tian H W, et al. Controlled release of nitrate and molybdate intercalated in Zn-Al-layered double hydroxide nanocontainers towards marine anticorrosion applications [J]. Colloid Interface Sci. Commun., 2018, 24: 18
doi: 10.1016/j.colcom.2018.03.003
[18] Alibakhshi E, Ghasemi E, Mahdavian M, et al. Fabrication and characterization of layered double hydroxide/silane nanocomposite coatings for protection of mild steel [J]. J. Taiwan Inst. Chem. Eng., 2017, 80: 924
doi: 10.1016/j.jtice.2017.08.015
[19] Inayat A, Klumpp M, Schwieger W. The urea method for the direct synthesis of ZnAl layered double hydroxides with nitrate as the interlayer anion [J]. Appl. Clay. Sci., 2011, 51: 452
doi: 10.1016/j.clay.2011.01.008
[20] Zhang Q, Zhang G J, Huang Y W, et al. Surface-modified LDH nanosheets with high dispersibility in oil for friction and wear reduction [J]. ACS Appl. Mater. Interfaces, 2024, 16: 5316
doi: 10.1021/acsami.3c17322
[21] Yang M S, Gu L H, Yang B, et al. Antifouling composites with self-adaptive controlled release based on an active compound intercalated into layered double hydroxides [J]. Appl. Surf. Sci., 2017, 426: 185
doi: 10.1016/j.apsusc.2017.07.207
[22] Roobottom H K, Jenkins H D B, Passmore J, et al. Thermochemical radii of complex ions [J]. J. Chem. Educ., 1999, 76: 1570
doi: 10.1021/ed076p1570
[23] Ma G X, Xu J X, Han L, et al. Enhanced inhibition performance of NO 2 - intercalated MgAl-LDH modified with nano-SiO2 on steel corrosion in simulated concrete pore solution [J]. Corros. Sci., 2022, 204: 110387
doi: 10.1016/j.corsci.2022.110387
[24] Liu A, Tian H W, Li W H, et al. Delamination and self-assembly of layered double hydroxides for enhanced loading capacity and corrosion protection performance [J]. Appl. Surf. Sci., 2018, 462: 175
doi: 10.1016/j.apsusc.2018.08.109
[25] Zuo J D, Wu B, Luo C Y, et al. Preparation of MgAl layered double hydroxides intercalated with nitrite ions and corrosion protection of steel bars in simulated carbonated concrete pore solution [J]. Corros. Sci., 2019, 152: 120
doi: 10.1016/j.corsci.2019.03.007
[26] Carneiro J, Caetano A F, Kuznetsova A, et al. Polyelectrolyte-modified layered double hydroxide nanocontainers as vehicles for combined inhibitors [J]. RSC Adv., 2015, 5: 39916
doi: 10.1039/C5RA03741G
[27] Cheng M, Liu J H, Liu Y Q, et al. Three birds with one stone: contemporaneously boosting passive, active and self-healing properties for long-term anticorrosion coatings [J]. Chem. Eng. J., 2023, 459: 141532
doi: 10.1016/j.cej.2023.141532
[28] Bai Z H, Meng S, Cui Y X, et al. A stable anticorrosion coating with multifunctional linkage against seawater corrosion [J]. Composites, 2023, 259B: 110733
[29] Liu S P, Zhang X F, Rao J S, et al. Ni-Co hydrotalcite modified diatom to achieve corrosion inhibition and Cl- adsorption for long-term corrosion protection of steel [J]. Corros. Sci., 2023, 225: 111589
doi: 10.1016/j.corsci.2023.111589
[30] Zhou Z Y, Pourhashem S, Wang Z Q, et al. Mxene structure: a key parameter in corrosion barrier performance of organic coatings [J]. J. Ind. Eng. Chem., 2022, 116: 310
doi: 10.1016/j.jiec.2022.09.021
[31] Borisova D, Akçakayıran D, Schenderlein M, et al. Nanocontainer-based anticorrosive coatings: Effect of the container size on the self-healing performance [J]. Adv. Funct. Mater., 2013, 23: 3799
doi: 10.1002/adfm.v23.30
[32] Zhang F, Pan J S, Claesson P M. Electrochemical and AFM studies of mussel adhesive protein (Mefp-1) as corrosion inhibitor for carbon steel [J]. Electrochim. Acta, 2011, 56: 1636
doi: 10.1016/j.electacta.2010.10.033
[33] Mohamed A, Visco Jr D P, Bastidas D M. Effect of cations on the activity coefficient of NO 2 - /NO 3 - corrosion inhibitors in simulated concrete pore solution: an electrochemical thermodynamics study [J]. Corros. Sci., 2022, 206: 110476
doi: 10.1016/j.corsci.2022.110476
[34] Zhang M, Xu F, Lin D, et al. A smart anti-corrosion coating based on triple functional fillers [J]. Chem. Eng. J., 2022, 446: 137078
doi: 10.1016/j.cej.2022.137078
[35] Liu A, Tian H W, Li S C, et al. Bioinspired layered hybrid coatings with greatly enhanced barrier effect and active corrosion protection performance [J]. Prog. Org. Coat., 2021, 152: 106131
[36] Tedim J, Kuznetsova A, Salak A N, et al. Zn-Al layered double hydroxides as chloride nanotraps in active protective coatings [J]. Corros. Sci., 2012, 55: 1
doi: 10.1016/j.corsci.2011.10.003
[37] Chen H L, Li X J, Wei Y. Corrosion mechanism of carbon steel in chloride solution [J]. Corros. Prot., 2007, 28: 17
[37] 陈惠玲, 李晓娟, 魏 雨. 碳钢在含氯离子环境中腐蚀机理的研究 [J]. 腐蚀与防护, 2007, 28: 17
[38] Ding C D, Tai Y, Wang D, et al. Superhydrophobic composite coating with active corrosion resistance for AZ31B magnesium alloy protection [J]. Chem. Eng. J., 2019, 357: 518
doi: 10.1016/j.cej.2018.09.133
[39] Xu J H, Gao F, Wang H, et al. Organic/inorganic hybrid waterborne polyurethane coatings with self-healing properties for anticorrosion application [J]. Prog. Org. Coat., 2023, 174: 107244
[40] Xie C, Jia Y, Xue M S, et al. Anti-corrosion and self-healing behaviors of waterborne polyurethane composite coatings enhanced via chitosan-modified graphene oxide and phosphate intercalated hydrotalcite [J]. Prog. Org. Coat., 2022, 168: 106881
[41] Álvarez D, Collazo A, Hernández M, et al. Characterization of hybrid sol-gel coatings doped with hydrotalcite-like compounds to improve corrosion resistance of AA2024-T3 alloys [J]. Prog. Org. Coat., 2010, 68: 91
[42] Chen C L, He Y, Xiao G Q, et al. Synergistic effect of graphene oxide@phosphate-intercalated hydrotalcite for improved anti-corrosion and self-healable protection of waterborne epoxy coating in salt environments [J]. J. Mater. Chem., 2019, 7C: 2318
[43] Wang Z H, Wang C J, Fan W H, et al. A novel fly ash bifunctional filler for epoxy coating with long-term anti-corrosion performance under harsh conditions [J]. Chem. Eng. J., 2022, 430: 133164
doi: 10.1016/j.cej.2021.133164
[44] Yasakau K A, Kuznetsova A, Kallip S, et al. A novel bilayer system comprising LDH conversion layer and sol-gel coating for active corrosion protection of AA2024 [J]. Corros. Sci., 2018, 143: 299
doi: 10.1016/j.corsci.2018.08.039
[45] Wang Y B, Zhang Y S, Zhou B T, et al. In-situ observation of the growth behavior of ZnAl layered double hydroxide film using EQCM [J]. Mater. Des., 2019
[46] Wang Y, Wei D B, Yu J, et al. Effects of Al2O3 Nano-additive on performance of micro-arc oxidation coatings formed on AZ91D Mg alloy [J]. J. Mater. Sci. Technol., 2014, 30: 984
doi: 10.1016/j.jmst.2014.03.006
[47] Ganborena L, Vega J M, Özkaya B, et al. AN SKP and EIS study of microporous nickel-chromium coatings in copper containing electrolytes [J]. Electrochim. Acta, 2019, 318: 683
doi: 10.1016/j.electacta.2019.05.108
[48] Zhang Y G, Chen Y L, Bian G X, et al. Electrochemical behavior and corrosion mechanism of anodized 7B04 aluminum alloy in acid NaCl environments [J]. J. Alloy. Compd., 2021, 886: 161231
doi: 10.1016/j.jallcom.2021.161231
[1] 刘建阳, 韩扬, 于美燕, 王巍. 光响应多功能自修复涂层的研究进展[J]. 中国腐蚀与防护学报, 2025, 45(6): 1493-1507.
[2] 李刚卿, 刘茜, 孙晓光, 潘景龙, 曹祥康, 董泽华. 缺陷自预警涂层的触发机制及制备策略研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 540-552.
[3] 宇波, 李彰, 周凯旋, 田浩亮, 房永超, 张晓敏, 金国. MoSi2 改性YGYZ作为陶瓷面层的多层热障涂层体系的抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[4] 王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[5] 刘玲, 邵紫雅, 贾天越, 刘国强, 雷冰, 孟国哲. 埃洛石纳米管负载改性及其在智能防腐涂层中的应用研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 523-530.
[6] 张正阳, 郭子新, 周欣, 孙海静, 孙杰. 纳米埃洛石装载苯并三氮唑自修复涂层研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 705-708.
[7] 张勇,樊伟杰,张泰峰,王安东,陈跃良. 涂层自修复技术研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 299-305.
[8] 王吉会,闫华杰,胡文彬. 钼酸盐插层锌铝铈水滑石的制备与缓蚀性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 637-644.
[9] 陈廷益, 路文, 李文芳, 付业琦. AA6063铝合金Zr黑灰色转化膜及其自修复性能[J]. 中国腐蚀与防护学报, 2015, 35(2): 177-182.
[10] 徐克,肖书彬,刘艳辉,阮国岭. 铝合金微弧氧化膜在高温盐水中的 耐蚀性能研究[J]. 中国腐蚀与防护学报, 2013, 33(1): 17-22.
[11] 闫建中; 吴荫顺; 李久青 . 316L不锈钢微动磨蚀过程表面钝化膜自修复行为研究[J]. 中国腐蚀与防护学报, 2000, 20(6): 355-360 .