|
|
|
| 选区激光熔化奥氏体不锈钢高温高压水中应力腐蚀开裂行为研究进展 |
兰博韬1,2, 吴斌1,2( ), 明洪亮1,2( ), 王俭秋1,2, 韩恩厚1,3 |
1.中国科学院金属研究所 沈阳 110016 2.中国科学技术大学材料科学与工程学院 沈阳 110016 3.广东腐蚀科学与技术创新研究院 广州 510530 |
|
| Research Progress of Stress Corrosion Crack Behavior of Selected Laser Melted Austenitic Stainless Steel in High Temperature Pressurized Water |
LAN Botao1,2, WU Bin1,2( ), MING Hongliang1,2( ), WANG Jianqiu1,2, HAN En-Hou1,3 |
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3.Institute of Corrosion Science and Technology, Guangzhou 510530, China |
引用本文:
兰博韬, 吴斌, 明洪亮, 王俭秋, 韩恩厚. 选区激光熔化奥氏体不锈钢高温高压水中应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 1-14.
Botao LAN,
Bin WU,
Hongliang MING,
Jianqiu WANG,
En-Hou HAN.
Research Progress of Stress Corrosion Crack Behavior of Selected Laser Melted Austenitic Stainless Steel in High Temperature Pressurized Water[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 1-14.
| [1] |
Liu X, Zhao J C, Wang G G, et al. Failure analysis of pipelines and welding joints in nuclear power plant [J]. Failure Anal. Prev., 2013, 8: 300
|
| [1] |
刘 肖, 赵建仓, 王淦刚 等. 核电厂管道及焊接接头失效案例综述 [J]. 失效分析与预防, 2013, 8: 300
|
| [2] |
Ehrnstén U, Andresen P L, Que Z Q. A review of stress corrosion cracking of austenitic stainless steels in PWR primary water [J]. J. Nucl. Mater., 2024, 588: 154815
doi: 10.1016/j.jnucmat.2023.154815
|
| [3] |
Lin X D, Peng Q J, Han E-H, et al. Review of thermal aging of nuclear grade stainless steels [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 81
|
| [3] |
林晓冬, 彭群家, 韩恩厚 等. 核级不锈钢的热老化研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 81
doi: 10.11902/1005.4537.2016.073
|
| [4] |
Kruml T, Polák J, Degallaix S. Microstructure in 316LN stainless steel fatigued at low temperature [J]. Mater. Sci. Eng., 2000, 293A: 275
|
| [5] |
Duan X W, Liu J S. Research on damage evolution and damage model of 316LN steel during forging [J]. Mater. Sci. Eng., 2013, 588A: 265
|
| [6] |
Liu Y S, Zhai X M, Deng Y P, et al. Tribological property of selective laser melting-processed 316L stainless steel against filled PEEK under water lubrication [J]. Tribol. Trans., 2019, 62: 962
doi: 10.1080/10402004.2019.1635671
|
| [7] |
Yang D C, Zhao Y, Kan X F, et al. Twinning behavior in deformation of SLM 316L stainless steel [J]. Mater. Res. Express, 2022, 9: 096502
|
| [8] |
Todd I. Printing steels [J]. Nat. Mater., 2018, 17: 13
doi: 10.1038/nmat5042
|
| [9] |
Kürnsteiner P, Wilms M B, Weisheit A, et al. High-strength Damascus steel by additive manufacturing [J]. Nature, 2020, 582: 515
doi: 10.1038/s41586-020-2409-3
|
| [10] |
Alcisto J, Enriquez A, Garcia H, et al. Tensile properties and microstructures of laser-formed Ti-6Al-4V [J]. J. Mater. Eng. Perform., 2011, 20: 203
doi: 10.1007/s11665-010-9670-9
|
| [11] |
Revilla R I, Van Calster M, Raes M, et al. Microstructure and corrosion behavior of 316L stainless steel prepared using different additive manufacturing methods: A comparative study bringing insights into the impact of microstructure on their passivity [J]. Corros. Sci., 2020, 176: 108914
doi: 10.1016/j.corsci.2020.108914
|
| [12] |
Ziętala M, Durejko T, Polański M, et al. The microstructure, mechanical properties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping [J]. Mater. Sci. Eng., 2016, 677A: 1
|
| [13] |
Kong D C. Cellular dislocation structure effects on the strength, toughness and corrosion resistance of selective laser melted 316L stainless steel [D]. Beijing: University of Science & Technology Beijing, 2022
|
| [13] |
孔德成. 胞状位错结构对激光选区熔化316L不锈钢强韧性的影响与耐蚀机理研究 [D]. 北京: 北京科技大学, 2022
|
| [14] |
Sabzi H E, Rivera-Diaz-del-Castillo P E J. Defect prevention in selective laser melting components: Compositional and process effects [J]. Materials, 2019, 12: 3791
doi: 10.3390/ma12223791
|
| [15] |
Wang Q Y, Gao M D, Li L, et al. Emergy-based environmental impact evaluation and modeling of selective laser melting [J]. Int. J. Adv. Manuf. Technol., 2021, 115: 1155
doi: 10.1007/s00170-021-07290-1
|
| [16] |
Song B, Zhao X, Li S, et al. Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review [J]. Front. Mech. Eng., 2015, 10: 111
doi: 10.1007/s11465-015-0341-2
|
| [17] |
Liverani E, Toschi S, Ceschini L, et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel [J]. J. Mater. Process. Technol., 2017, 249: 255
doi: 10.1016/j.jmatprotec.2017.05.042
|
| [18] |
Wang Z T, Yang S L, Huang Y B, et al. Microstructure and fatigue damage of 316L stainless steel manufactured by selective laser melting (SLM) [J]. Materials, 2021, 14: 7544
doi: 10.3390/ma14247544
|
| [19] |
Murugesan S, Kuppusami P, Mohandas E, et al. X-ray diffraction Rietveld analysis of cold worked austenitic stainless steel [J]. Mater. Lett., 2012, 67: 173
doi: 10.1016/j.matlet.2011.09.065
|
| [20] |
Saeidi K, Gao X, Zhong Y, et al. Hardened austenite steel with columnar sub-grain structure formed by laser melting [J]. Mater. Sci. Eng., 2015, 625A: 221
|
| [21] |
Ramirez D A, Murr L E, Martinez E, et al. Novel precipitate-microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting [J]. Acta Mater., 2011, 59: 4088
doi: 10.1016/j.actamat.2011.03.033
|
| [22] |
Liu L F, Ding Q Q, Zhong Y, et al. Dislocation network in additive manufactured steel breaks strength-ductility trade-off [J]. Mater. Today, 2018, 21: 354
doi: 10.1016/j.mattod.2017.11.004
|
| [23] |
Birnbaum A J, Steuben J C, Barrick E J, et al. Intrinsic strain aging, Σ3 boundaries, and origins of cellular substructure in additively manufactured 316L [J]. Addit. Manuf., 2019, 29: 100784
|
| [24] |
Bertsch K M, de Bellefon G M, Kuehl B, et al. Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L [J]. Acta Mater., 2020, 199: 19
doi: 10.1016/j.actamat.2020.07.063
|
| [25] |
Kong D C, Dong C F, Wei S L, et al. About metastable cellular structure in additively manufactured austenitic stainless steels [J]. Addit. Manuf., 2021, 38: 101804
|
| [26] |
Kong D C, Dong C F, Ni X Q, et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes [J]. J. Mater. Sci. Technol., 2019, 35: 1499
doi: 10.1016/j.jmst.2019.03.003
|
| [27] |
Yan F Y, Xiong W, Faierson E, et al. Characterization of nano-scale oxides in austenitic stainless steel processed by powder bed fusion [J]. Scr. Mater., 2018, 155: 104
doi: 10.1016/j.scriptamat.2018.06.011
|
| [28] |
Wu B, Gu Z J, Sun W, et al. Insights into the role of SiO2 inclusions on the corrosion behavior of SLM 304 L stainless steel in high temperature pressurized water [J]. Corros. Sci., 2025, 253: 113031
doi: 10.1016/j.corsci.2025.113031
|
| [29] |
Sun Y, Hebert R J, Aindow M. Non-metallic inclusions in 17-4PH stainless steel parts produced by selective laser melting [J]. Mater. Des., 2018, 140: 153
doi: 10.1016/j.matdes.2017.11.063
|
| [30] |
Lou X Y, Song M, Emigh P W, et al. On the stress corrosion crack growth behaviour in high temperature water of 316L stainless steel made by laser powder bed fusion additive manufacturing [J]. Corros. Sci., 2017, 128: 140
doi: 10.1016/j.corsci.2017.09.017
|
| [31] |
Woźniak A, Adamiak M, Chladek G, et al. The influence of the process parameters on the microstructure and properties SLM processed 316L stainless steel [J]. Arch. Metall. Mater., 2020, 65: 73
|
| [32] |
Shrestha S, Chou K. An investigation into melting modes in selective laser melting of Inconel 625 powder: Single track geometry and porosity [J]. Int. J. Adv. Manuf. Technol., 2021, 114: 3255
doi: 10.1007/s00170-021-07105-3
|
| [33] |
Wang L, Wei Q S, Shi Y S, et al. Experimental investigation into the single-track of selective laser melting of IN625 [J]. Adv. Mater. Res., 2011, 233-235: 2844
|
| [34] |
Yadroitsev I, Yadroitsava I, Bertrand P, et al. Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks [J]. Rapid Prototyping J., 2012, 18: 201
doi: 10.1108/13552541211218117
|
| [35] |
Yi J H, Kang J W, Wang T J, et al. Effect of laser energy density on the microstructure, mechanical properties, and deformation of Inconel 718 samples fabricated by selective laser melting [J]. J. Alloy. Compd., 2019, 786: 481
doi: 10.1016/j.jallcom.2019.01.377
|
| [36] |
Xu Y C. Effect of layer thickness and particle size distribution on microstructure and mechanical properties of mold steel by additive manufacturing [D]. Guangzhou: Guangzhou University, 2024
|
| [36] |
徐永昶. 粉末层厚和粒径对增材制造模具钢组织和性能的影响研究 [D]. 广州: 广州大学, 2024
|
| [37] |
Tan S N, Wang Y F, Liu W Y, et al. Anisotropy reduction of additively manufactured AlSi10Mg for metal mirrors [J]. J. Mater. Sci., 2022, 57: 11934
doi: 10.1007/s10853-022-07080-4
|
| [38] |
Cooke S, Ahmadi K, Willerth S, et al. Metal additive manufacturing: Technology, metallurgy and modelling [J]. J. Manuf. Process., 2020, 57: 978
doi: 10.1016/j.jmapro.2020.07.025
|
| [39] |
Suryawanshi J, Prashanth K G, Ramamurty U. Mechanical behavior of selective laser melted 316L stainless steel [J]. Mater. Sci. Eng., 2017, 696A: 113
|
| [40] |
Wang S, Liu Y D, Shi W T, et al. Research on high layer thickness fabricated of 316L by selective laser melting [J]. Materials, 2017, 10: 1055
doi: 10.3390/ma10091055
|
| [41] |
Schwerz C, Schulz F, Natesan E, et al. Increasing productivity of laser powder bed fusion manufactured Hastelloy X through modification of process parameters [J]. J. Manuf. Process., 2022, 78: 231
doi: 10.1016/j.jmapro.2022.04.013
|
| [42] |
Nguyen Q B, Luu D N, Nai S M L, et al. The role of powder layer thickness on the quality of SLM printed parts [J]. Arch. Civ. Mech. Eng., 2018, 18: 948
doi: 10.1016/j.acme.2018.01.015
|
| [43] |
Sadowski M, Ladani L, Brindley W, et al. Optimizing quality of additively manufactured Inconel 718 using powder bed laser melting process [J]. Addit. Manuf., 2016, 11: 60
|
| [44] |
Wang N, Li Z H, Yao B B, et al. Selective laser melting process of large-size Ti6Al4V powder [J]. Chin. J. Lasers, 2024, 51: 2002304
doi: 10.3788/CJL
|
| [44] |
王 宁, 黎振华, 姚碧波 等. 大粒径Ti6Al4V粉末激光选区熔化成形工艺研究 [J]. 中国激光, 2024, 51: 2002304
|
| [45] |
Wu J, Ma J, Niu X F, et al. Numerical simulation of selective laser melting of 304 L stainless steel [J]. Metals, 2023, 13: 1212
doi: 10.3390/met13071212
|
| [46] |
Dutt A K, Bansal G K, Tripathy S, et al. Optimization of selective laser melting (SLM) additive manufacturing process parameters of 316L austenitic stainless steel [J]. Trans. Indian Inst. Met., 2023, 76: 335
doi: 10.1007/s12666-022-02687-2
|
| [47] |
Ciurana J, Hernandez L, Delgado J. Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material [J]. Int. J. Adv. Manuf. Technol., 2013, 68: 1103
doi: 10.1007/s00170-013-4902-4
|
| [48] |
Scipioni Bertoli U, Wolfer A J, Matthews M J, et al. On the limitations of volumetric energy density as a design parameter for selective laser melting [J]. Mater. Des., 2017, 113: 331
doi: 10.1016/j.matdes.2016.10.037
|
| [49] |
Yin J, Hao L, Yang L L, et al. Investigation of interaction between vapor plume and spatter during selective laser melting additive manufacturing [J]. Chin. J. Lasers, 2022, 49: 1402202
doi: 10.3788/CJL
|
| [49] |
殷 杰, 郝 亮, 杨亮亮 等. 激光选区熔化增材制造中金属蒸气与飞溅相互作用研究 [J]. 中国激光, 2022, 49: 1402202
|
| [50] |
Zhang L T. Stress corrosion crack growth behavior of nuclear grade 316 stainless steel in pressurized high temperature water [D]. Beijing: University of Chinese Academy of Sciences, 2014
|
| [50] |
张利涛. 核级316不锈钢在高温高压水环境中的应力腐蚀裂纹扩展行为研究 [D]. 北京: 中国科学院大学, 2014
|
| [51] |
Moss T, Kuang W, Was G S. Stress corrosion crack initiation in alloy 690 in high temperature water [J]. Curr. Opin. Solid State Mater. Sci., 2018, 22: 16
doi: 10.1016/j.cossms.2018.02.001
|
| [52] |
Macdonald D D, Lu P C, Urquidi-Macdonald M, et al. Theoretical estimation of crack growth rates in type 304 stainless steel in boiling-water reactor coolant environments [J]. Corrosion, 1996, 52: 768
doi: 10.5006/1.3292070
|
| [53] |
Galvele J. Application of the surface-mobility stress corrosion cracking mechanism to nuclear materials [J]. J. Nucl. Mater., 1996, 229: 139
doi: 10.1016/0022-3115(95)00208-1
|
| [54] |
Andresen P L, Ford F P. Fundamental modeling of environmental cracking for improved design and lifetime evaluation in BWRs [J]. Int. J. Pressure Vessels Piping, 1994, 59: 61
doi: 10.1016/0308-0161(94)90142-2
|
| [55] |
Ford F P. Quantitative prediction of environmentally assisted cracking [J]. Corrosion, 1996, 52: 375
doi: 10.5006/1.3292125
|
| [56] |
Andresen P L, Young L M. Crack tip microsampling and growth rate measurements in low-alloy steel in high-temperature water [J]. Corrosion, 1995, 51: 223
doi: 10.5006/1.3294365
|
| [57] |
Zhou Y H, Chen K, Ferreirós P A, et al. Printed cellular structure enhancing re-passivation of stress corrosion cracking in high-temperature water [J]. Corros. Sci., 2025, 244: 112636
doi: 10.1016/j.corsci.2024.112636
|
| [58] |
Zhou Y H, Liu J, Ferreirós P A, et al. Integrated effects of non-equilibrium microstructures on stress corrosion cracking susceptibility of post-treated laser powder-bed-fusion 316 L stainless steels [J]. Corros. Sci., 2025, 252: 112974
doi: 10.1016/j.corsci.2025.112974
|
| [59] |
Zhang S H, Wang S K, Feng X Y, et al. Insights into the stress corrosion cracking resistance of a selective laser melted 304L stainless steel in high-temperature hydrogenated water [J]. Acta Mater., 2023, 244: 118561
doi: 10.1016/j.actamat.2022.118561
|
| [60] |
Lou X Y, Othon M A, Rebak R B. Corrosion fatigue crack growth of laser additively-manufactured 316L stainless steel in high temperature water [J]. Corros. Sci., 2017, 127: 120
doi: 10.1016/j.corsci.2017.08.023
|
| [61] |
Zhai Z Q, Toloczko M B, Olszta M J, et al. Stress corrosion crack initiation of alloy 600 in PWR primary water [J]. Corros. Sci., 2017, 123: 76
doi: 10.1016/j.corsci.2017.04.013
|
| [62] |
Zhang K Q, Tang Z M, Hu S L, et al. Effect of cold work and slow strain rate on 321SS stress corrosion cracking in abnormal conditions of simulated PWR primary environment [J]. Nucl. Mater. Energy, 2019, 20: 100697
|
| [63] |
Briant C L, Andresen P L. Grain boundary segregation in austenitic stainless steels and its effect on intergranular corrosion and stress corrosion cracking [J]. Metall. Trans., 1988, 19A: 495
|
| [64] |
Toor I U H, Park K J, Kwon H. Manganese effects on repassivation kinetics and SCC susceptibility of high MN-N austenitic stainless steel alloys [J]. J. Electrochem. Soc., 2007, 154: C494
doi: 10.1149/1.2752089
|
| [65] |
Dong J Y, Feng X Y, Hao X C, et al. The environmental degradation behavior of FeNiMnCr high entropy alloy in high temperature hydrogenated water [J]. Scr. Mater., 2021, 204: 114127
doi: 10.1016/j.scriptamat.2021.114127
|
| [66] |
Li G F, Kaneshima Y, Shoji T. Effects of impurities on environmentally assisted crack growth of solution-annealed austenitic steels in primary water at 325 oC [J]. Corrosion, 2000, 56: 460
doi: 10.5006/1.3280550
|
| [67] |
Tsai T C, Chuang T H. Role of grain size on the stress corrosion cracking of 7475 aluminum alloys [J]. Mater. Sci. Eng., 1997, 225A: 135
|
| [68] |
Afkhami S, Dabiri M, Alavi S H, et al. Fatigue characteristics of steels manufactured by selective laser melting [J]. Int. J. Fatigue, 2019, 122: 72
doi: 10.1016/j.ijfatigue.2018.12.029
|
| [69] |
Suryawanshi J, Prashanth K G, Ramamurty U. Tensile, fracture, and fatigue crack growth properties of a 3D printed maraging steel through selective laser melting [J]. J. Alloy. Compd., 2017, 725: 355
doi: 10.1016/j.jallcom.2017.07.177
|
| [70] |
Suryawanshi J, Prashanth K G, Scudino S, et al. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting [J]. Acta Mater., 2016, 115: 285
doi: 10.1016/j.actamat.2016.06.009
|
| [71] |
Huang S, Kumar P, Lim C W J, et al. Fracture behavior of PH15-5 stainless steel manufactured via directed energy deposition [J]. Mater. Des., 2023, 235: 112421
doi: 10.1016/j.matdes.2023.112421
|
| [72] |
Alnajjar M, Christien F, Barnier V, et al. Influence of microstructure and manganese sulfides on corrosion resistance of selective laser melted 17-4 PH stainless steel in acidic chloride medium [J]. Corros. Sci., 2020, 168: 108585
doi: 10.1016/j.corsci.2020.108585
|
| [73] |
Zhong Y, Liu L F, Wikman S, et al. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting [J]. J. Nucl. Mater., 2016, 470: 170
doi: 10.1016/j.jnucmat.2015.12.034
|
| [74] |
Fang Z, Wu Y, Zhu R. Stress corrosion cracking of type 304 stainless steel weldments in the active state [J]. Corrosion, 1994, 50: 171
doi: 10.5006/1.3293508
|
| [75] |
Örnek C, Engelberg D L. Towards understanding the effect of deformation mode on stress corrosion cracking susceptibility of grade 2205 duplex stainless steel [J]. Mater. Sci. Eng., 2016, 666A: 269
|
| [76] |
Sinjlawi A, Chen J J, Kim H S, et al. Role of residual ferrites on crevice SCC of austenitic stainless steels in PWR water with high-dissolved oxygen [J]. Nucl. Eng. Technol., 2020, 52: 2552
doi: 10.1016/j.net.2020.04.023
|
| [77] |
Dong L J, Han E H, Peng Q J, et al. Environmentally assisted crack growth in 308L stainless steel weld metal in simulated primary water [J]. Corros. Sci., 2017, 117: 1
doi: 10.1016/j.corsci.2016.12.011
|
| [78] |
Lai C L, Lu W F, Huang J Y. Effect of δ-ferrite content on the stress corrosion cracking behavior of cast austenitic stainless steel in high-temperature water environment [J]. Corrosion, 2014, 70: 591
doi: 10.5006/1155
|
| [79] |
Abe H, Watanabe Y. Role of δ-ferrite in stress corrosion cracking retardation near fusion boundary of 316NG welds [J]. J. Nucl. Mater., 2012, 424: 57
doi: 10.1016/j.jnucmat.2012.02.006
|
| [80] |
Du D H, Wang J M, Chen K, et al. Environmentally assisted cracking of forged 316LN stainless steel and its weld in high temperature water [J]. Corros. Sci., 2019, 147: 69
doi: 10.1016/j.corsci.2018.10.032
|
| [81] |
Tokuda S, Muto I, Sugawara Y, et al. Pit initiation on sensitized Type 304 stainless steel under applied stress: Correlation of stress, Cr-depletion, and inclusion dissolution [J]. Corros. Sci., 2020, 167: 108506
doi: 10.1016/j.corsci.2020.108506
|
| [82] |
Kuniya J, Anzai H, Masaoka I. Effect of MnS inclusions on stress corrosion cracking in low-alloy steels [J]. Corrosion, 1992, 48: 419
doi: 10.5006/1.3315955
|
| [83] |
Shimahashi N, Muto I, Sugawara Y, et al. Effects of corrosion and cracking of sulfide inclusions on pit initiation in stainless steel [J]. J. Electrochem. Soc., 2014, 161: C494
doi: 10.1149/2.0831410jes
|
| [84] |
Laleh M, Hughes A E, Xu W, et al. Unanticipated drastic decline in pitting corrosion resistance of additively manufactured 316L stainless steel after high-temperature post-processing [J]. Corros. Sci., 2020, 165: 108412
doi: 10.1016/j.corsci.2019.108412
|
| [85] |
Chauvet E, Kontis P, Jägle E A, et al. Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting [J]. Acta Mater., 2018, 142: 82
doi: 10.1016/j.actamat.2017.09.047
|
| [86] |
Han K, Wang H Q, Peng F, et al. Effect of cooling rate on the microporosity in the fusion zone of electron beam welded IN738LC joint [J]. Mater. Lett., 2020, 258: 126682
doi: 10.1016/j.matlet.2019.126682
|
| [87] |
Boswell J H, Clark D, Li W, et al. Cracking during thermal post-processing of laser powder bed fabricated CM247LC Ni-superalloy [J]. Mater. Des., 2019, 174: 107793
doi: 10.1016/j.matdes.2019.107793
|
| [88] |
Nono M, Nakajima T, Iwama M, et al. SCC behavior of SUS316L in the high temperature pressurized water environment [J]. J. Nucl. Mater., 2011, 417: 878
doi: 10.1016/j.jnucmat.2010.12.150
|
| [89] |
Sun W, Wu B, Ming H L, et al. Effect of cold work level on the crack propagation behaviour of 316LN stainless steel in high-temperature pressurized water [J]. J. Nucl. Mater., 2025, 603: 155403
doi: 10.1016/j.jnucmat.2024.155403
|
| [90] |
Zhang W Q, Wang X L, Wang S Y, et al. Combined effects of machining-induced residual stress and external load on SCC initiation and early propagation of 316 stainless steel in high temperature high pressure water [J]. Corros. Sci., 2021, 190: 109644
doi: 10.1016/j.corsci.2021.109644
|
| [91] |
Meyers M A. Mechanical behavior of materials (2nd ed.) [J]. Aircr Eng Aerosp Technol Int J, 2009, 81
|
| [92] |
Lozano-Perez S, Saxey D W, Yamada T, et al. Atom-probe tomography characterization of the oxidation of stainless steel [J]. Scr. Mater., 2010, 62: 855
doi: 10.1016/j.scriptamat.2010.02.021
|
| [93] |
Arioka K, Yamada T, Terachi T, et al. Dependence of stress corrosion cracking for cold-worked stainless steel on temperature and potential, and role of diffusion of vacancies at crack tips [J]. Corrosion, 2008, 64: 691
doi: 10.5006/1.3278507
|
| [94] |
Wang J M, Zhu T Y, Chen K, et al. Investigations on the SCC initiation behavior of cold worked 316 L in high temperature oxygenated water at constant loads [J]. Corros. Sci., 2022, 203: 110336
doi: 10.1016/j.corsci.2022.110336
|
| [95] |
Cruz V, Qiu Y, Birbilis N, et al. Stress corrosion cracking of 316L manufactured by laser powder bed fusion in 6% ferric chloride solution [J]. Corros. Sci., 2022, 207: 110535
doi: 10.1016/j.corsci.2022.110535
|
| [96] |
Du D H, Chen K, Yu L, et al. SCC crack growth rate of cold worked 316L stainless steel in PWR environment [J]. J. Nucl. Mater., 2015, 456: 228
doi: 10.1016/j.jnucmat.2014.09.054
|
| [97] |
Staehle R W, Gorman J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 1 [J]. Corrosion, 2003, 59: 931
doi: 10.5006/1.3277522
|
| [98] |
Zhang L T, Wang J Q. Stress corrosion crack propagation behavior of domestic forged nuclear grade 316L stainless steel in high temperature and high pressure water [J]. Acta Metall. Sin., 2013, 49: 911
doi: 10.3724/SP.J.1037.2013.00171
|
| [98] |
张利涛, 王俭秋. 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为 [J]. 金属学报, 2013, 49: 911
doi: 10.3724/SP.J.1037.2013.00171
|
| [99] |
Andresen P L. Emerging issues and fundamental processes in environmental cracking in hot water [J]. Corrosion, 2008, 64: 439
doi: 10.5006/1.3278483
|
| [100] |
Du D H, Chen K, Lu H, et al. Effects of chloride and oxygen on stress corrosion cracking of cold worked 316/316L austenitic stainless steel in high temperature water [J]. Corros. Sci., 2016, 110: 134
doi: 10.1016/j.corsci.2016.04.035
|
| [101] |
Honda M, Kobayashi Y, Tamada A. Stress corrosion cracking of stainless alloys in alkaline sulfide solutions [J]. Corrosion, 1992, 48: 822
doi: 10.5006/1.3315880
|
| [102] |
Xie X F, Ning D, Chen B, et al. Stress corrosion cracking behavior of cold-drawn 316 austenitic stainless steels in simulated PWR environment [J]. Corros. Sci., 2016, 112: 576
doi: 10.1016/j.corsci.2016.08.014
|
| [103] |
Li G F, Congleton J. Stress corrosion cracking of a low alloy steel to stainless steel transition weld in PWR primary waters at 292 oC [J]. Corros. Sci., 2000, 42: 1005
doi: 10.1016/S0010-938X(99)00131-6
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|