Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1537-1548     CSTR: 32134.14.1005.4537.2025.061      DOI: 10.11902/1005.4537.2025.061
  研究报告 本期目录 | 过刊浏览 |
模拟液滴电导率变化对碳钢大气腐蚀的影响机制研究
李兆南1, 侯禹岑1, 莒鹏2, 庄铁钢3, 陈景杰1, 王明昱1(), 徐云泽1,4
1 大连理工大学船舶工程学院 大连 116024
2 中海石油(中国)有限公司上海分公司 上海 200000
3 中国电建集团华东勘测设计研究院有限公司 杭州 310000
4 工业装备结构分析优化与CAE软件全国重点实验室 大连 116024
Influence of Simulated Electrolyte Droplets with Varied Conductivity on Atmospheric Corrosion of Carbon Steel
LI Zhaonan1, HOU Yucen1, JU Peng2, ZHUANG Tiegang3, CHEN Jingjie1, WANG Mingyu1(), XU Yunze1,4
1 School of Naval Engineering, Dalian University of Technology, Dalian 116024, China
2 China National Offshore Oil Corporation (China) Co. Ltd. , Shanghai Branch, Shanghai 200000, China
3 China Power Construction Corporation East China Survey and Design Institute Co. Ltd. , Hangzhou 310000, China
4 National Key Laboratory of Industrial Equipment Structural Analysis and Optimization and CAE Software, Dalian 116024, China
引用本文:

李兆南, 侯禹岑, 莒鹏, 庄铁钢, 陈景杰, 王明昱, 徐云泽. 模拟液滴电导率变化对碳钢大气腐蚀的影响机制研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1537-1548.
Zhaonan LI, Yucen HOU, Peng JU, Tiegang ZHUANG, Jingjie CHEN, Mingyu WANG, Yunze XU. Influence of Simulated Electrolyte Droplets with Varied Conductivity on Atmospheric Corrosion of Carbon Steel[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1537-1548.

全文: PDF(17599 KB)   HTML
摘要: 

通过实验室模拟大气中液滴环境,采用丝束电极技术系统地研究了不同电导率液滴下碳钢腐蚀行为的演化规律。实验结果表明,随着腐蚀时间的延长,低电导率液滴下碳钢表面局部阴阳极电流逐渐增强,而高电导率液滴下阴阳极电流逐渐减弱。当液滴内NaCl浓度为0.001 mol/L时,实验初期电极表面阴阳极分布较为随机,而当NaCl浓度超过0.003 mol/L时,电极表面的阴阳极电流分布呈现典型的Evans模型特征。进一步研究表明,液滴电导率的变化会显著影响宏电池电流和微电池电流对总腐蚀速率的作用机制。在低电导率条件下,阴极区域的宏电池电流起到保护作用,能够有效避免腐蚀的发生;而在高电导率条件下,阴极区域在微电池电流的作用下发生了明显的腐蚀。

关键词 大气腐蚀碳钢液滴电导率丝束电极    
Abstract

The wire beam electrode technique was systematically employed to investigate the evolution of atmospheric corrosion behavior on carbon steel surfaces under droplets with varying conductivities in laboratory-simulated environments. The experimental results showed that with increasing corrosion time, the local anodic and cathodic currents on the carbon steel surface gradually increased under low-conductivity droplets, while both currents gradually decreased under high-conductivity droplets. When the NaCl concentration inside the droplet was 0.001 mol/L, the anodic and cathodic distributions on the electrode surface appeared relatively random during the initial stage of the experiment. However, when the NaCl concentration exceeded 0.003 mol/L, the distribution of anodic and cathodic currents on the electrode surface exhibited the typical characteristics of the Evans model. Further research revealed that variations in droplet conductivity significantly influenced the mechanisms by which macro-cell and micro-cell currents affected the overall corrosion rate. Under low-conductivity conditions, the macro-cell currents in the cathodic region played a protective role, effectively preventing corrosion. In contrast, under high-conductivity conditions, the cathodic region underwent significant corrosion due to the action of micro-cell currents.

Key wordsatmospheric corrosion    carbon steel    conductivity droplets    wire beam electrode
收稿日期: 2025-02-21      32134.14.1005.4537.2025.061
ZTFLH:  TG174  
基金资助:国家自然科学基金(52471272)
通讯作者: 王明昱,E-mail:mingyu.w@foxmail.com,研究方向为船舶与海洋结构物腐蚀与防护
Corresponding author: WANG Mingyu, E-mail: mingyu.w@foxmail.com
作者简介: 李兆南,男,2000年生,硕士生
图1  丝束电极实物图及局部电化学测试实验装置示意图
图2  在不同浓度的NaCl溶液中Q355b碳钢的极化曲线
ConcentrationIcorr / mA·cm-2βa / mV·dec-1βc / mV·dec-1IL / mA·cm-2
0.001 mol/L0.012476.9622.580.0233
0.003 mol/L0.015267.4726.770.0232
0.2 mol/L0.019143.77178.841.27 × 1015
0.5 mol/L0.003824.9385.471.17 × 1017
表1  Q355b碳钢在不同浓度的NaCl溶液中极化曲线的拟合电化学参数
图3  不同浓度液滴下腐蚀不同时间后Q355b碳钢表面电流分布云图
图4  不同浓度液滴下腐蚀不同时间后Q355b碳钢表面电位分布图
图5  不同浓度液滴下腐蚀不同时期的丝束表面形貌图和末期电流分布图
图6  不同浓度液滴下总阳极电流分布图
图7  不同浓度液滴下阳极区电偶电流与总阳极电流占比图
图8  不同电导率液滴下金属表面腐蚀机理图
[1] Ma W L, Wang H X, Guo H D, et al. A synergistic experimental and computational study on CO2 corrosion of X65 carbon steel under dispersed droplets within oil/water mixtures [J]. Corros. Commun., 2023, 12: 64
[2] Hu J Z, Hu X, Deng P C, et al. Research progress of seawater galvanic coupling corrosion of steels [J]. Corros. Prot., 2024, 45(1): 51
[2] (胡杰珍, 胡 欣, 邓培昌 等. 钢铁海水电偶腐蚀的研究进展 [J]. 腐蚀与防护, 2024, 45(1): 51)
[3] Liang L H, Wang J, Jiang J, et al. Study of correlativity between micro-droplets phenomenon and atmospheric corrosion process [J]. Equip. Environ. Eng., 2009, 6(3): 1
[3] (梁利花, 王 佳, 姜 晶 等. 微液滴现象与大气腐蚀过程相关性研究 [J]. 装备环境工程, 2009, 6(3): 1)
[4] Wang L, Mou X L, Zhu L, et al. Review of atmospheric corrosivity classification [J]. Equip. Environ. Eng., 2010, 7(6): 24
[4] (王 玲, 牟献良, 朱 蕾 等. 大气环境腐蚀性分类分级研究综述 [J]. 装备环境工程, 2010, 7(6): 24)
[5] Chen Z W, Sun L, Zhang W, et al. Corrosion behavior of marine structural steel in tidal zone based on wire beam electrode technology and partitioned cellular automata model [J]. Corros. Commun., 2022, 5: 87
[6] Wei X. Study of liquid droplets corrode metal in maritime atmospheric environment [J]. Chem. Enterp. Manage., 2013, (18): 197
[6] (魏 雄. 海洋大气环境下液滴对金属腐蚀 [J]. 化工管理, 2013, (18): 197)
[7] Zhou L J, Yang S W. Atmospheric corrosion of steels for marine engineering and development of weathering steels [J]. China Metall., 2022, 32(8): 7
[7] (周鲁军, 杨善武. 海洋工程用钢的大气腐蚀与耐候钢的发展 [J]. 中国冶金, 2022, 32(8): 7)
[8] Wang Y, Liu Y H, Mu X L, et al. Effect of environmental factors on material transfer in thin liquid film during atmospheric corrosion process in marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1015
[8] (汪 洋, 刘元海, 慕仙莲 等. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 1015)
[9] Wang J Y, Zhou X J, Wang H L, et al. Initial corrosion behavior of carbon steel and high strength steel in South China sea atmosphere [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 237
[9] (王靖羽, 周学杰, 王洪伦 等. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 237)
[10] Cao C, Zheng S S, Hu W B, et al. Review of research on mechanical properties of steel structure under atmospheric environment corrosion [J]. Mater. Rep., 2020, 34: 11162
[10] (曹 琛, 郑山锁, 胡卫兵 等. 大气环境腐蚀下钢结构力学性能研究综述 [J]. 材料导报, 2020, 34: 11162)
[11] El-Mahdy G A, Al-Lohedan H A, Issa Z. Monitoring the corrosion rate of carbon steel under a single droplet of NaCl [J]. Int. J. Electrochem. Sci., 2014, 9: 7977
[12] Rahimi E, Zhang K E, Kosari A, et al. Atmospheric corrosion of iron under a single droplet: A new systematic multi-electrochemical approach [J]. Corros. Sci., 2024, 235: 112171
[13] Wang J, Shui L C. An investigation on oxygen reduction under thin electrolyte layer using Kelvin probe reference electrode [J]. J. Chin. Soc. Corros. Prot., 1995, 15: 180
[13] (王 佳, 水流彻. 使用Kelvin探头参比电极技术研究液层厚度对氧还原速度的影响 [J]. 中国腐蚀与防护学报, 1995, 15: 180)
[14] Tan Y J. Wire beam electrode: A new tool for studying localised corrosion and other heterogeneous electrochemical processes [J]. Corros. Sci., 1999, 41: 229
[15] Tan Y J. Sensing electrode inhomogeneity and electrochemical heterogeneity using an electrochemically integrated multielectrode array [J]. J. Electrochem. Soc., 2009, 156: C195
[16] Tan Y J. Experimental methods designed for measuring corrosion in highly resistive and inhomogeneous media [J]. Corros. Sci., 2011, 53: 1145
[17] Wang Y H, Wang W, Liu Y Y, et al. Study of localized corrosion of 304 stainless steel under chloride solution droplets using the wire beam electrode [J]. Corros. Sci., 2011, 53: 2963
[18] Muster T H, Bradbury A, Trinchi A, et al. The atmospheric corrosion of zinc: The effects of salt concentration, droplet size and dro-plet shape [J]. Electrochim. Acta, 2011, 56: 1866
[19] Wang M Y, Tan M Y, Zhu Y S, et al. Probing top-of-the-line corrosion using coupled multi-electrode array in conjunction with local electrochemical measurement [J]. npj Mater. Degrad., 2023, 7: 16
[20] Tang X, Li J J, Wu Y, et al. Electrochemical formation mechanism of microdroplets on pure iron [J]. Front. Chem., 2021, 9: 610738
[21] Tang X, Ma C R, Orazem M E, et al. Local electrochemical characteristics of pure iron under a saline droplet II: Local corrosion kinetics [J]. Electrochim. Acta, 2020, 354: 136631
[22] Tang X, Ma C R, Zhou X X, et al. Atmospheric corrosion local electrochemical response to a dynamic saline droplet on pure iron [J]. Electrochem. Commun., 2019, 101: 28
[23] Wang Y H, Liu Y Y, Wang W, et al. Influences of the three-phase boundary on the electrochemical corrosion characteristics of carbon steel under droplets [J]. Mater. Corros., 2013, 64: 309
[24] Ma C L, Ma R P, Bai Y H. Characteristics of atmospheric environment in China's coastal areas and atmospheric corrosion in typical coastal regions [J]. Equip. Environ. Eng., 2017, 14(8): 65
[24] (马长李, 马瑞萍, 白云辉. 我国沿海地区大气环境特征及典型沿海地区大气腐蚀性研究 [J]. 装备环境工程, 2017, 14(8): 65)
[25] Cao C N. Estimation of elfctrochemical kinetic parameters of corrosion processes by weak polarization curve fitting [J]. J. Chin. Soc. Corros. Prot., 1985, 5: 155
[25] (曹楚南. 由弱极化曲线拟合估算腐蚀过程的电化学动力学参数 [J]. 中国腐蚀与防护学报, 1985, 5: 155)
[26] Soulié V, Lequien F, Ferreira-Gomes F, et al. Salt-induced iron corrosion under evaporating sessile droplets of aqueous sodium chloride solutions [J]. Mater. Corros., 2017, 68: 927
[27] Jing J, Wang J. Effect of gas/liquid/solid three-phase boundary zone on cathodic process of metal corrosion [J]. Corros. Sci. Prot. Technol., 2009, 21: 79
[27] (姜 晶, 王 佳. 气/液/固三相线界面区的性质在金属腐蚀阴极过程中的作用 [J]. 腐蚀科学与防护技术, 2009, 21: 79)
[28] Wang W W, Wang J, Lu Y H. Research progress on effect of gas/liquid/solid three phase boundary area on cathodic processes [J]. Corros. Sci. Prot. Technol., 2009, 21: 393
[28] (王伟伟, 王 佳, 芦永红. 气/液/固三相线界面区对阴极电化学过程影响的研究进展 [J]. 腐蚀科学与防护技术, 2009, 21: 393)
[29] Gu X L, Dong Z, Yuan Q, et al. Corrosion of stirrups under different relative humidity conditions in concrete exposed to chloride environment [J]. J. Mater. Civ. Eng., 2020, 32: 04019329
[30] Tan Y. Monitoring localized corrosion processes and estimating localized corrosion rates using a wire-beam electrode [J]. Corrosion, 1998, 54: 403
[31] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008: 2
[31] (曹楚南. 腐蚀电化学原理 [M]. 3版. 北京: 化学工业出版社, 2008: 2)
[32] Xu R, Wang Y H, Wang J, et al. Influence of spreadability of seawater droplet on electrochemical characteristics of carbon steel [J]. Chin. J. Mater. Res., 2015, 29: 95
[32] (续 冉, 王燕华, 王佳 等. 海水液滴铺展因子对碳钢表面电化学特性的影响 [J]. 材料研究学报, 2015, 29: 95)
[33] Zheng L Y, Cao F H, Liu W J, et al. Corrosion behavior of Q235 in simulated natural environment by electrochemical technology [J]. Equip. Environ. Eng., 2011, 8(4): 8
[33] (郑利云, 曹发和, 刘文娟 等. Q235钢在模拟自然环境下失效行为的电化学研究 [J]. 装备环境工程, 2011, 8(4): 8)
[34] Tan Y J. Understanding the effects of electrode inhomogeneity and electrochemical heterogeneity on pitting corrosion initiation on bare electrode surfaces [J]. Corros. Sci., 2011, 53: 1845
[1] 王得, 张璠, 王兴奇, 张贺新, 赵成志, 杨延格. 单组分氟碳改性环氧涂层对碳钢和铝合金长期防腐性能的对比研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1549-1562.
[2] 冯宇芹, 郭同翰, 余韦汉, 吴伟, 张大全. Sb对高强结构钢在东海环境中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1300-1308.
[3] 李秋博, 苏一喆, 吴伟, 张俊喜. 自源性磁场对Cu大气腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 956-964.
[4] 彭立园, 谢敬礼, 曹胜飞, 谭季波, 吴欣强, 张兹瑜. 日本高放废物处置容器腐蚀厚度设计研究进展[J]. 中国腐蚀与防护学报, 2025, 45(3): 563-576.
[5] 彭文山, 辛永磊, 温杰平, 侯健, 孙明先. 极地冰覆盖下变温和恒温对高强钢腐蚀影响研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 821-826.
[6] 张佳伟, 黄峰, 汪涵敏, 郎丰军, 袁玮, 刘静. 耐候钢热轧氧化皮对快速稳定化锈层演变规律及耐蚀性影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 891-900.
[7] 王刚, 李昭, 王涛, 段腾, 杜翠薇. 光伏桩基用钢在新疆土壤中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 987-992.
[8] 樊志彬, 高智悦, 宗立君, 吴亚平, 李辛庚, 姜波, 杜宝帅. 1050A铝合金在山东不同典型环境中的大气腐蚀行为特征研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1055-1063.
[9] 李婷玉, 魏洁, 陈楠, 万晔, 董俊华. 用于大气环境的电化学传感器的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 365-371.
[10] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[11] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[12] 王靖羽, 周学杰, 王洪伦, 吴军, 陈昊, 郑鹏华. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[13] 汪洋, 刘元海, 慕仙莲, 刘淼然, 王俊, 李秋平, 陈川. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[14] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[15] 郝文魁, 陈新, 徐玲铃, 韩钰, 陈云, 黄路遥, 祝志祥, 杨丙坤, 王晓芳, 张强. 电网碳钢、镀锌钢大气腐蚀等级图绘制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.