Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1450-1458     CSTR: 32134.14.1005.4537.2025.048      DOI: 10.11902/1005.4537.2025.048
  研究报告 本期目录 | 过刊浏览 |
加氢型酸性水汽提装置塔顶空冷腐蚀泄漏分析研究
孟庆元1, 代鹏宇2, 张瑜2(), 杨彦哲2(), 李沈典2, 刘福贵3
1 中国石油华北石化公司 任丘 062552
2 沈阳大学机械工程学院 沈阳 110043
3 沈阳中科韦尔腐蚀控制技术有限公司 沈阳 110180
A Survey of Corrosion Leakage for Air-cooled Tube at Tower Top of Hydrogenated Acidic Water Stripping Unit
MENG Qingyuan1, DAI Pengyu2, ZHANG Yu2(), YANG Yanzhe2(), LI Shendian2, LIU Fugui3
1 PetroChina North China Petrochemical Company, Renqiu 062552, China
2 Faculty of Meehanics Shenyang University, Shenyang 110043, China
3 Shenyang Zhongkeweier Corrosion Control Technology Co., Ltd., Shenyang 110180, China
引用本文:

孟庆元, 代鹏宇, 张瑜, 杨彦哲, 李沈典, 刘福贵. 加氢型酸性水汽提装置塔顶空冷腐蚀泄漏分析研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1450-1458.
Qingyuan MENG, Pengyu DAI, Yu ZHANG, Yanzhe YANG, Shendian LI, Fugui LIU. A Survey of Corrosion Leakage for Air-cooled Tube at Tower Top of Hydrogenated Acidic Water Stripping Unit[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1450-1458.

全文: PDF(12762 KB)   HTML
摘要: 

对某加氢型酸性水汽提装置塔顶空冷泄漏的产生原因进行了研究。酸性水汽提装置塔顶空冷介质为H2O、NH3、H2S、NH4HS等,取失效的管束采用宏观观察、金相、SEM等检验手段并结合腐蚀产物的XRD谱进行分析,结果表明,其中加氢型酸性水汽提装置NH3和H2S含量更高,产生了冲刷腐蚀,造成管壁内侧的减薄,腐蚀泄漏问题更为突出。确定了空冷泄漏的主要腐蚀原因为管束内壁凝结形成了固态NH4HS,造成管束介质流速不均匀而产生局部的冲刷腐蚀。针对现场具体情况,提出了管束材质升级、增加管束坡度、提高底部管束温度、改进工艺操作等措施以有效缓解该处腐蚀。

关键词 加氢型酸性水汽提NH4HS冲刷腐蚀空冷腐蚀    
Abstract

A comprehensive survey on the causes of the leakage of the top air cooler of a hydrogenation-type sour water vapor stripping unit, covering aspects such as the process and equipment in question. The air-coolant of the top cooler of the sour water vapor stripping unit consists of H2O, NH3, H2S, NH4HS, and other chemical substances. The failed tube bundles were examined by means of macroscopic observation, metallographic microscope, SEM, and XRD in terms of the microstructure and composition of the tube steel, morphology and composition of corrosion products etc. The results indicated that the hydrogenation-type sour water vapor stripping unit contained higher concentrations of NH3 and H2S, leading to erosion-corrosion that caused progressive thinning of the inner wall of tubes and exacerbated the issue of corrosion and leakage. Analysis revealed that the main cause of the leakage for the air-cooled system was identified as the formation of solid deposits NH4HS on the inner wall of the tube bundle due to condensation, which leads to non-uniform flow velocity of the coolant in the tube, thus leading to localized erosion-corrosion. Finally, corresponding counter measures were also proposed.

Key wordshydrogenation-type sour water stripping    NH4HS    erosion-corrosion    air-cooled corrosion
收稿日期: 2024-12-20      32134.14.1005.4537.2025.048
ZTFLH:  TE986  
通讯作者: 张瑜,E-mail:nihao9985@163.com,研究方向为材料腐蚀与防护,表面处理及热成型;
杨彦哲,E-mail:yanzheYang0131@163.com,研究方向为材料腐蚀与防护
Corresponding author: ZHANG Yu, E-mail: nihao9985@163.com;
YANG Yanzhe, E-mail: yanzheYang0131@163.com
作者简介: 孟庆元,男,1969年生,硕士,高级工程师
ItemCSiMnCrAlMoRePS
09Cr2AlMoRe0.06-0.100.2-0.50.3-0.62.0-2.30.3-0.70.3-0.5Confidential≤ 0.02≤ 0.015
Tube material0.090.350.562.220.520.33~0.20.0110.012
表1  换热器管束钢材的化学成分 (mass fraction / %)
图1  泄漏部位及泄漏管束分布图
图2  COMSOL面网格具体划分图
图3  不同部位及高度样管断面及测厚情况
图4  第7层样管内表面形貌及取样部位与各断面形貌对比
图5  图4中1#、2#、3#标记区域的金相组织
图6  管内壁腐蚀产物层附着形貌
图7  管内沉积物的XRD谱
图8  底层管束腐蚀环境示意图[16]以及冲刷模拟图
[1] Zhong Y Z, Jin A M. Present situation and progresses of residue processing technology [J]. Acta Petrol. Sin. (Pet. Process. Sect.), 2015, 31: 436
[1] 钟英竹, 靳爱民. 渣油加工技术现状及发展趋势 [J]. 石油学报(石油加工), 2015, 31: 436
[2] Gao Y, Gao R M. Brief introduction on the development of Chinese private refineries [J]. Acta Petrol. Sin. (Pet. Process. Sect.), 2017, 33: 785
[2] 高 杨, 高瑞明. 中国地方炼油厂发展现状及思考 [J]. 石油学报(石油加工), 2017, 33: 785
[3] Gao M, Bo D C, Chen J B. Research and analysis of sour water stripping unit [J]. Contemp. Chem. Ind., 2018, 47: 1426
[3] 高 明, 薄德臣, 陈建兵. 酸性水汽提装置研析 [J]. 当代化工, 2018, 47: 1426
[4] Yu F, Song Q H, Zheng B H, et al. A typical process of refinery sour water stripper unit and its design parameters [J]. Petrochem. Technol., 2014, 43: 555
[4] 于 峰, 宋庆慧, 郑宝翬 等. 炼油厂酸性水汽提装置的典型流程和工艺设计参数的选择 [J]. 石油化工, 2014, 43: 555
[5] Sun C S, Jiang H, Gong H, et al. Analysis of foulant of heat exchangers and stripper plates in refinery sour water stripping unit [J]. Petrochem. Technol., 2016, 45: 719
[5] 孙崇帅, 姜 恒, 宫 红 等. 炼油厂酸性水汽提装置换热器及汽提塔塔盘积垢的分析 [J]. 石油化工, 2016, 45: 719
[6] Yan B, Wei C Y. Cause analysis and countermeasures of corrosion and leakage of air cooler tube bundle at the top of sour water stripper [J]. Sulphuric Acid Ind., 2021, (12): 52
[6] 颜 兵, 魏城瑶. 酸性水汽提塔顶空气冷却器管束腐蚀泄漏原因分析及对策 [J]. 硫酸工业, 2021, (12): 52
[7] Chen L C, Yang J F, Liu W B, et al. Corrosion and protection of sour water stripper unit [J]. Total Corros. Control, 2015, 29(5): 50
[7] 陈良超, 杨剑锋, 刘文彬 等. 酸性水汽提装置腐蚀及防护分析 [J]. 全面腐蚀控制, 2015, 29(5): 50
[8] Li Z M, Chen X D, Rong R. Production practice of reforming sour water stripping unit in refinery [J]. Sulphuric Acid Ind., 2023, (6): 56
[8] 李治明, 陈贤德, 荣 荣. 炼厂酸性水汽提装置改造生产实践 [J]. 硫酸工业, 2023, (6): 56
[9] Shokri A. An investigation of corrosion and sedimentation in the air cooler tubes of benzene drying column in linear alkyl benzene production plant [J]. Chem. Pap., 2019, 73: 2265
doi: 10.1007/s11696-019-00776-z
[10] Ravindranath K, Alazemi R. Failure of stainless steel 304L air cooler tubes due to stress corrosion cracking caused by organic chlorides [J]. Eng. Fail. Anal., 2019, 102: 79
doi: 10.1016/j.engfailanal.2019.04.029
[11] Yang H C, Yuan H, Wang H Y, et al. Research on detection of pipeline crack defects based on COMSOL ultrasonic simulation [J]. Petrochem. Ind. Technol., 2024, 31(11): 112
[11] 杨海聪, 袁 浩, 王浩宇 等. 基于COMSOL超声模拟仿真检测管道裂纹缺陷的研究 [J]. 石化技术, 2024, 31(11): 112
[12] Jia J H, Luo C, Sun Z H, et al. Simulation and analysis of typical connected parts for areoengine compressor [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 979
[12] 贾静焕, 骆 晨, 孙志华 等. 航空发动机典型连接件腐蚀仿真分析 [J]. 中国腐蚀与防护学报, 2024, 44: 979
doi: 10.11902/1005.4537.2023.293
[13] Ling D, He K, Yu L, et al. Finite element simulation of pitting corrosion of super 13Cr stainless steel in high-temperature and high-pressured CO2 containing artificial formation waters [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 303
[13] 凌 东, 何 坤, 余 靓 等. 高温高压CO2环境中超级13Cr不锈钢点蚀有限元模拟 [J]. 中国腐蚀与防护学报, 2024, 44: 303
[14] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Steel—Determination of content of nonmetallic inclusions—Micrographic method using standards diagrams [S]. Beijing: Standards Press of China, 2005
[14] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 钢中非金属夹杂物含量的测定标准评级图显微检验法 [S]. 北京: 中国标准出版社, 2005
[15] Liu G Q, Zheng Y G, Jiang S L, et al. Stability and erosion corrosion behavior of corrosion product film of Q235 carbon steel and Cr5Mo low alloy steel in simulated oil refinery media [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 122
[15] 刘贵群, 郑玉贵, 姜胜利 等. 模拟炼油环境中Q235钢和Cr5Mo钢表面硫化物膜稳定性及动态冲刷腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 122
[16] Wang L. Analysis on corrosion cause of the sour water overhead piping [J]. Total Corros. Control, 2013, 27(7): 30
[16] 王 乐. 酸性水汽提塔塔顶管线腐蚀分析 [J]. 全面腐蚀控制, 2013, 27(7): 30
[17] Cao J. Ammonium bisulfide deposition mechanism and numerical analysis of multi-physics coupling in reactor effluent air cooler [D]. Hangzhou: Zhejiang Sci-Tech University, 2011
[17] 曹 晶. 加氢空冷系统硫氢化铵流动沉积机理及多场耦合数值分析 [D]. 杭州: 浙江理工大学, 2011
[18] You X F, Tang Z S, Yang X Y, et al. Influencing factors analysis and preventive measures for safe and stable operation of acid water stripping unit [J]. Henan Chem. Indust., 2024, 41(12): 50
[18] 游咸丰, 唐战胜, 杨晓燕 等. 酸性水汽提装置安全平稳运行影响因素分析及预防措施 [J]. 河南化工, 2024, 41(12): 50
[19] Jin H Z, Yu C Y, Ji Y, et al. Prediction model of erosion damage characteristics of NH3-H2S environment wax oil hydrogenated air cooler outlet pipeline system [J]. Acta Petrol. Sin. (Pet. Process. Sect.), 2022, 38: 128
[19] 金浩哲, 俞晨炀, 吉 洋 等. NH3-H2S环境蜡油加氢空冷出口管道冲蚀损伤特性预测模型 [J]. 石油学报(石油加工), 2022, 38: 128
[20] Toba K, Kawano K, Yamamoto K, et al. The application of process analyses to prevent corrosion in sour water stripper overhead cooler tubes [A]. Corrosion 2005 [C]. Houston, 2005: NACE-05569
[21] Ou G F, Ren H Y, Wang K X, et al. Erosion-corrosion behaviors of 10# carbon steel in NH4HS solution [J]. Acta Petrol. Sin. (Pet. Process. Sect.), 2014, 30: 928
[21] 偶国富, 任海燕, 王宽心 等. 10#碳钢在NH4HS溶液中的冲蚀规律 [J]. 石油学报(石油加工), 2014, 30: 928
[22] Jiang A G, Zhang J W, Xin Y N, et al. Numerical simulation of multiphase erosion-corrosion of tubes bundles of hydrocracking air cooler [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 192
[22] 姜爱国, 张建文, 辛亚男 等. 加氢裂化空冷器管束多相流冲刷腐蚀数值模拟 [J]. 中国腐蚀与防护学报, 2019, 39: 192
doi: 10.11902/1005.4537.2018.003
[23] Ou G F. Study on simulation of multiphase flow and prediction of erosion attack breakage for REAC pipes [D]. Hangzhou: Zhejiang University, 2004: 8
[23] 偶国富. 加氢裂化空冷器管束多相流模拟与冲蚀破坏预测研究 [D]. 杭州: 浙江大学, 2004: 8
[24] Lu Z G. Study on inhibition efficiency of compound corrosion inhibitor in REAC [D]. Beijing: Beijing University of Chemical Technology, 2008
[24] 卢志刚. 加氢裂化空冷器系统中复合缓蚀剂的性能研究 [D]. 北京: 北京化工大学, 2008
[25] Jia T. Study on process optimization of acidic water stripping device [J]. Petrochem. Ind. Technol., 2019, 26(12): 15
[25] 贾 涛. 酸性水汽提装置工艺流程优化研究 [J]. 石化技术, 2019, 26(12): 15
[1] 彭文山, 邢少华, 钱峣, 蔺存国, 侯健, 张大磊. 流动海水冲刷下TA2纯钛管路钝化膜腐蚀特性研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[2] 傅江悦, 郭建喜, 杨延格, 冷哲, 王文. 单相流冲刷条件下一种低合金高强钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[3] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[4] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[5] 高秋英, 曾文广, 王恒, 刘元聪, 扈俊颖. 流体冲刷作用对SRB的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[6] 杨新宇, 李祯, 段体岗, 黄国胜, 马力, 刘峰, 姜丹. 70Cu-30Ni合金管FeSO4预成膜及冲刷腐蚀行为分析[J]. 中国腐蚀与防护学报, 2023, 43(3): 561-568.
[7] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[8] 杨湘愚, 关蕾, 李雨, 张永康, 王冠, 闫德俊. 基于正交试验的90°弯管冲刷腐蚀数值模拟及实验研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
[9] 任莹, 赵会军, 周昊, 张建伟, 刘雯, 杨足膺, 王磊. 粒径和温度对20号钢冲刷腐蚀协同作用的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 508-516.
[10] 胡宗武, 刘建国, 邢蕊, 尹法波. 单相流条件下90°水平弯管冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[11] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[12] 姜爱国,张建文,辛亚男,丛晓明,董轼. 加氢裂化空冷器管束多相流冲刷腐蚀数值模拟[J]. 中国腐蚀与防护学报, 2019, 39(2): 192-200.
[13] 魏木孟,杨博均,刘洋洋,王孝平,姚敬华,高灵清. Cu-Ni合金管海水冲刷腐蚀研究现状及展望[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[14] 彭文山,曹学文. 固体颗粒对液/固两相流弯管冲蚀作用分析[J]. 中国腐蚀与防护学报, 2015, 35(6): 556-562.
[15] 刘贵群, 郑玉贵, 姜胜利, 荆军航, 董伟娟, 曾宏, 司品宪. 模拟炼油环境中Q235钢和Cr5Mo钢表面硫化物膜稳定性及动态冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 122-128.