Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1417-1424     CSTR: 32134.14.1005.4537.2024.398      DOI: 10.11902/1005.4537.2024.398
  研究报告 本期目录 | 过刊浏览 |
纳秒激光辐照对17-4PH不锈钢电化学腐蚀行为的影响
李萍1, 时慧杰1, 裴继斌2, 王子健1, 曹铁山1, 程从前1(), 赵杰1
1 大连理工大学材料科学与工程学院 大连 116024
2 吉林铁道职业技术学院铁道机车车辆学院 吉林 132299
Impact of Nanosecond Pulsed Laser Irradiation on Electrochemical Corrosion Behavior of 17-4PH Stainless Steel
LI Ping1, SHI Huijie1, PEI Jibin2, WANG Zijian1, CAO Tieshan1, CHENG Congqian1(), ZHAO Jie1
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2 School of Railway Locomotive and Vehicle, Jilin Railway Technology College, Jilin 132299, China
引用本文:

李萍, 时慧杰, 裴继斌, 王子健, 曹铁山, 程从前, 赵杰. 纳秒激光辐照对17-4PH不锈钢电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1417-1424.
Ping LI, Huijie SHI, Jibin PEI, Zijian WANG, Tieshan CAO, Congqian CHENG, Jie ZHAO. Impact of Nanosecond Pulsed Laser Irradiation on Electrochemical Corrosion Behavior of 17-4PH Stainless Steel[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1417-1424.

全文: PDF(5812 KB)   HTML
摘要: 

为发展可替代化学钝化的17-4PH不锈钢激光钝化技术,以点蚀电位为指标开展了激光工艺参数的正交试验;结合电化学阻抗分析、表面腐蚀形貌观察和钝化膜价态测试,探讨纳秒激光辐照对17-4PH不锈钢电化学腐蚀行为的影响。结果表明:最佳激光辐照条件下,样品的点蚀电位和阻抗均高于常规钝化,钝化膜中点缺陷浓度最低,表面氧化膜的铬铁比最高。分析认为,上述现象的形成归因于激光辐照而致的热效应氧化,即在高温短时激光辐照作用下,Cr的热力学氧化优势更加明显,优先形成氧化层以保护基体。

关键词 17-4PH不锈钢纳秒脉冲激光正交试验电化学测试耐腐蚀性    
Abstract

The impact of nanosecond laser irradiation on the electrochemical corrosion resistance of 17-4PH stainless steel in 3%NaCl solution was investigated by means of electrochemical impedance analysis, surface corrosion morphology observation, and passivation film valence state testing. The results show that the steel after being subjected to laser irradiation with optimal processing parameters presents pitting potential and impedance higher than those after being passivated in 30%HNO3 solution i.e. conventional passivation. Among others, the concentration of point defects in the passivation film of the former was the lowest. while its Cr/Fe ratio was the highest. These phenomena may be attributed to that the nanosecond laser irradiation can promote the preferential oxidation of Cr to form chromium oxide through instantaneous high-temperature oxidation, while reducing surface defects and roughness, optimizing the passivation film structure, and significantly improving the pitting resistance of stainless steel, so that effectively improving the corrosion resistance of stainless steel.

Key words17-4PH stainless steel    nanosecond pulse laser    orthogonal experiment    electrochemical testing    corrosion resistance
收稿日期: 2024-12-19      32134.14.1005.4537.2024.398
ZTFLH:  TG178  
基金资助:航天发射场可靠性技术重点实验室项目(SYS-2022-12-02)
通讯作者: 程从前,E-mail:cqcheng@dlut.edu.cn,研究方向为不锈钢表面钝化及完整性评价、高温氧化/腐蚀机理、车身轻量化材料腐蚀与可靠性
Corresponding author: CHENG Congqian, E-mail: cqcheng@dlut.edu.cn
作者简介: 李 萍,女,1969年生,博士,副教授
LevelA (power / W)B (pulse width / ns)C (overlap rate / %)
11203065
213012070
314024075
表1  激光处理L9 (33)正交实验参数设置
Experimental numberA (power / W)B (pulse width / ns)C (overlap rate / %)Pitting potential, E / V
L112030650.232
L2120120700.394
L3120240750.341
L413030750.271
L5130120700.345
L6130240650.321
L714030700.318
L8140120650.247
L9140240750.255
k1 (E)0.3220.2740.267
k2 (E)0.3120.3290.352
k3 (E)0.2730.3060.289
R (E)0.0490.0550.086
Factor rankingR(E): C > B > A
Optimal solutionPitting potential: A1B2C2
表2  正交试验结果及极差分析
图1  点蚀电位平均值随各因素、水平的变化曲线
图2  不同条件表面处理的17-4PH不锈钢样品的动电位极化曲线
图3  不同条件下表面处理样品在3.5%NaCl溶液中动电位测试前后表面与点蚀形貌
图4  不同条件表面处理的17-4PH不锈钢在3.5%NaCl溶液中的EIS与等效电路
SamplesRs / Ω·cm2CPE1 / μΩ-1·cm-2·s nnRp / 105 Ω·cm2
Grinding5.22.30.907.6
Chemical passivation4.01.50.9223.2
L16.02.10.826.6
L26.40.90.9347.8
L66.42.20.8417.8
表3  17-4PH不锈钢在3.5%NaCl溶液中EIS的等效电路拟合结果
图5  不同条件表面处理的17-4PH不锈钢样品在3.5%NaCl溶液中的Mott-Schottky曲线
SampleGrindingChemical passivationL 1L 2L 6
ND / 1021 cm-31.5050.6960.8230.4100.585
NA / 1021 cm-31.1670.6130.7490.3850.528
表4  不同条件表面处理的17-4PH不锈钢在3.5%NaCl溶液中形成的钝化膜的掺杂浓度
图6  不同条件表面处理的17-4PH不锈钢表面钝化膜的XPS光谱
Relative atomic concentrationGrindingChemical passivationOptimal laser passive
{[Crox]+[Crhyd]}/{[Crox]+[Crhyd]+[Crmet]}0.8550.8360.898
{[Feox]+[Fehyd]}/{[Feox]+[Fehyd]+[Femet]}0.9200.6730.777
{[Crox]+[Crhyd]}/{[Feox]+[Fehyd]}0.1741.1245.972
表5  不同条件表面处理的17-4PH不锈钢钝化膜成分的XPS分析结果(相对原子浓度)
[1] Nakhaie D. Investigating the impact of pre-deformation on age hardening and pitting corrosion resistance of 17-4PH stainless steel [J]. Metall. Mater. Trans., 2023, 54A: 3653
[2] Martínez-Aparicio B, Martínez-Bastidas D, Gaona-Tiburcio C, et al. Localized corrosion of 15-5PH and 17-4PH stainless steel in NaCl solution [J]. J. Solid State Electrochem., 2023, 27: 2993
[3] Barroux A, Ducommun N, Nivet E, et al. Pitting corrosion of 17-4PH stainless steel manufactured by laser beam melting [J]. Corros. Sci., 2020, 169: 108594
[4] Cheng C Q, Zhao J, Cao T S, et al. Facile chromaticity approach for the inspection of passive films on austenitic stainless steel [J]. Corros. Sci., 2013, 70: 235
[5] Rodionova I G, Feoktistova M V, Baklanova O N, et al. Effect of chemical composition and microstructure parameters on carbon and low-alloy steel corrosion resistance [J]. Metallurgist, 2018, 61: 770
[6] Amezhnov A V, Rodionova I G, Antoshenkov A E, et al. Influence of chemical composition and microstructure parameters of tubing steels on their corrosion resistance [J]. Metallurgist, 2021, 65: 294
[7] Lara-Banda M, Gaona-Tiburcio C, Zambrano-Robledo P, et al. Alternative to nitric acid passivation of 15-5 and 17-4PH stainless steel using electrochemical techniques [J]. Materials, 2020, 13: 2836
[8] Ameer M A, Fekry A M, El-Taib Heakal F. Electrochemical behavior of stainless steel in acidic environments: influence of chloride ions [J]. Electrochim. Acta, 2004, 50(1): 43
[9] Hu Y, Du J D, Li T, et al. Fe-based sacrificial anodes for cathodic protection of 17-4PH stainless steel [J]. Corros. Sci. Prot. Technol., 2016, 28: 391
[9] 胡 毓, 杜见第, 李 婷 等. 铁基牺牲阳极对17-4PH不锈钢的阴极保护 [J]. 腐蚀科学与防护技术, 2016, 28: 391
[10] Yu D T, Wang R, Wu C L, et al. Iso-Material Manufactured 17-4PH stainless steel to enhance the nano-indentation, corrosion, and cavitation erosion behavior [J]. J. Mater. Eng. Perform., 2024, 33: 10134
[11] Meng L J, Long J Z, Yang H, et al. Femtosecond laser treatment for improving the corrosion resistance of selective laser melted 17-4PH stainless steel [J]. Micromachines, 2022, 13: 1089
[12] Yang Q B, Wang D G, Xiong Y H, et al. Mechanism of surface corrosion resistance of 304 stainless steel processed by nanosecond laser pulses [J]. Mater. Corros., 2023, 74: 551
[13] Zhu Q C, Sun W T, Yoo Y, et al. Enhance corrosion resistance of 304 stainless steel using nanosecond pulsed laser surface processing [J]. Surf. Interf., 2023, 42: 103479
[14] Shi T, Sun J Q, Wang X W, et al. Effect of trace water in ammonia on breaking passive film of stainless steel during gas nitriding [J]. Vacuum, 2022, 202: 111216
[15] Hou Y, Zhao J, Cao T S, et al. Improvement on the pitting corrosion resistance of 304 stainless steel via duplex passivation treatment [J]. Mater. Corros., 2019, 70: 1764
[16] Goodlet G, Faty S, Cardoso S, et al. The electronic properties of sputtered chromium and iron oxide films [J]. Corros. Sci., 2004, 46: 1479
[17] Sander G, Babu A P, Gao X, et al. On the effect of build orientation and residual stress on the corrosion of 316L stainless steel prepared by selective laser melting [J]. Corros. Sci., 2021, 179: 109149
[18] Gomes W P, Vanmaekelbergh D. Impedance spectroscopy at semiconductor electrodes: review and recent developments [J]. Electrochim. Acta, 1996, 41: 967
[19] Liu Z J, Cheng X Q, Li X G, et al. Application of PDM (point defect model) on 2205 duplex stainless steel [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 90
[19] 刘佐嘉, 程学群, 李晓刚 等. 点缺陷模型在2205双相不锈钢中的应用 [J]. 中国腐蚀与防护学报, 2013, 33: 90
[20] Yang G M, Du Y F, Chen S Y, et al. Effect of secondary passivation on corrosion behavior and semiconducting properties of passive film of 2205 duplex stainless steel [J]. J. Mater. Res. Technol., 2021, 15: 6828
[21] Carmezim M J, Simões A M, Montemor M F, et al. Capacitance behaviour of passive films on ferritic and austenitic stainless steel [J]. Corros. Sci., 2005, 47: 581
[22] Biesinger M C, Payne B P, Grosvenor A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J]. Appl. Surf. Sci., 2011, 257: 2717
[23] Süzer S, Kadirgan F, Söhmen H M. XPS characterization of Co and Cr pigmented copper solar absorbers [J]. Solar Energy Mater. Solar Cells, 1999, 56: 183
[24] Wang Z C, Di-Franco F, Seyeux A, et al. Passivation-induced physicochemical alterations of the native surface oxide film on 316L austenitic stainless steel [J]. J. Electrochem. Soc., 2019, 166: C3376
[25] Awasthi A, Kumar D, Marla D. Understanding the role of oxide layers on color generation and surface characteristics in nanosecond laser color marking of stainless steel [J]. Opt. Laser Technol., 2024, 171: 110469
[26] Swayne M, Perumal G, Brabazon D. Mechanism for control of laser-induced stainless steel oxidation [J]. Adv. Mater. Interfaces, 2024, 11: 2300991
[27] Mroczkowska K M, Dzienny P, Budnicki A, et al. Corrosion resistance of AISI 304 stainless steel modified both femto- and nanosecond lasers [J]. Coatings, 2021, 11: 592
[28] Kamrunnahar M, Bao J E, Macdonald D D. Challenges in the theory of electron transfer at passive interfaces [J]. Corros. Sci., 2005, 47: 3111
[29] Cui C Y, Cui X G, Ren X D, et al. Surface oxidation phenomenon and mechanism of AISI 304 stainless steel induced by Nd: YAG pulsed laser [J]. Appl. Surf. Sci., 2014, 305: 817
[30] Wang S M, Tong H, Wang D, et al. Thermodynamic analysis and experimental study of masked corrosion protection of 304 stainless steel processed with nanosecond pulsed laser [J]. Metals, 2022, 12: 749
[31] Lynch B, Neupane S, Wiame F, et al. An XPS and ToF-SIMS study of the passive film formed on a model FeCrNiMo stainless steel surface in aqueous media after thermal pre-oxidation at ultra-low oxygen pressure [J]. Appl. Surf. Sci., 2021, 554: 149435
[32] Tang C G, Zhu J H. The measurement of interface strength of TiN coating/substrate by laser spallation [J]. Int. J. Refractory Met. Hard Mater., 1996, 14: 203
[1] 佟向瑜, 徐玮辰, 王秀通, 王优强, 段继周. 常用钛合金焊接接头显微组织结构及对材料性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
[2] 岳锐, 刘咏咏, 杨丽景, 朱兴隆, 陈权昕, 阿那尔, 张青科, 宋振纶. 激光重熔对生物可降解Zn-0.4Mn合金微观结构和性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1127-1134.
[3] 冉仁豪, 单慧琳, 张鹏杰, 汪冬梅, 斯佳佳, 徐光青, 吕珺. 表层镁合金化NdFeB磁体的制备及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2025, 45(4): 1117-1126.
[4] 李茂, 邓轲, 陈衍祥, 刘中豪, 李尚, 郭宇婷, 董选普, 曹华堂. N2 流量和靶基距对多弧离子镀沉积AlSiN纳米复合涂层的微观组织及耐腐蚀性能影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
[5] 赵立佳, 崔新宇, 王吉强, 熊天英. 冷喷涂B4C/Al复合涂层在硼酸溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[6] 马宏宇, 刘叡, 崔宇, 柯培玲, 刘莉, 王福会. 静水压力对Cr/GLC叠层涂层腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(1): 103-114.
[7] 董征, 毛永祺, 孟洲, 陈向翔, 付传清, 陆晨涛. 应力作用下钢筋在模拟混凝土孔隙液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.
[8] 马晓伟, 薛荣洁, 王涛涛, 杨亮, 刘珍光. 锆基非晶合金与传统合金在海水中的耐腐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.
[9] 林一, 刘涛, 郭彦兵, 阮晴, 郭章伟, 董丽华. 船用低温钢焊接材料的研发与腐蚀方法评价[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
[10] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[11] 师超, 李嘉浩, 王荣祥, 张博, 周兰欣, 刘光明, 邵亚薇. 不同偏压对45#钢电弧离子镀铝层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[12] 王靖羽, 周学杰, 王洪伦, 吴军, 陈昊, 郑鹏华. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[13] 常雪婷, 宋嘉琪, 王冰, 王东胜, 陈文聪, 王海丰. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[14] 王泉润, 侯进, 侯保荣, 田惠文. 气相缓蚀剂分析方法研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1189-1202.
[15] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.