|
|
纳秒激光辐照对17-4PH不锈钢电化学腐蚀行为的影响 |
李萍1, 时慧杰1, 裴继斌2, 王子健1, 曹铁山1, 程从前1( ), 赵杰1 |
1 大连理工大学材料科学与工程学院 大连 116024 2 吉林铁道职业技术学院铁道机车车辆学院 吉林 132299 |
|
Impact of Nanosecond Pulsed Laser Irradiation on Electrochemical Corrosion Behavior of 17-4PH Stainless Steel |
LI Ping1, SHI Huijie1, PEI Jibin2, WANG Zijian1, CAO Tieshan1, CHENG Congqian1( ), ZHAO Jie1 |
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China 2 School of Railway Locomotive and Vehicle, Jilin Railway Technology College, Jilin 132299, China |
引用本文:
李萍, 时慧杰, 裴继斌, 王子健, 曹铁山, 程从前, 赵杰. 纳秒激光辐照对17-4PH不锈钢电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1417-1424.
Ping LI,
Huijie SHI,
Jibin PEI,
Zijian WANG,
Tieshan CAO,
Congqian CHENG,
Jie ZHAO.
Impact of Nanosecond Pulsed Laser Irradiation on Electrochemical Corrosion Behavior of 17-4PH Stainless Steel[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1417-1424.
[1] |
Nakhaie D. Investigating the impact of pre-deformation on age hardening and pitting corrosion resistance of 17-4PH stainless steel [J]. Metall. Mater. Trans., 2023, 54A: 3653
|
[2] |
Martínez-Aparicio B, Martínez-Bastidas D, Gaona-Tiburcio C, et al. Localized corrosion of 15-5PH and 17-4PH stainless steel in NaCl solution [J]. J. Solid State Electrochem., 2023, 27: 2993
|
[3] |
Barroux A, Ducommun N, Nivet E, et al. Pitting corrosion of 17-4PH stainless steel manufactured by laser beam melting [J]. Corros. Sci., 2020, 169: 108594
|
[4] |
Cheng C Q, Zhao J, Cao T S, et al. Facile chromaticity approach for the inspection of passive films on austenitic stainless steel [J]. Corros. Sci., 2013, 70: 235
|
[5] |
Rodionova I G, Feoktistova M V, Baklanova O N, et al. Effect of chemical composition and microstructure parameters on carbon and low-alloy steel corrosion resistance [J]. Metallurgist, 2018, 61: 770
|
[6] |
Amezhnov A V, Rodionova I G, Antoshenkov A E, et al. Influence of chemical composition and microstructure parameters of tubing steels on their corrosion resistance [J]. Metallurgist, 2021, 65: 294
|
[7] |
Lara-Banda M, Gaona-Tiburcio C, Zambrano-Robledo P, et al. Alternative to nitric acid passivation of 15-5 and 17-4PH stainless steel using electrochemical techniques [J]. Materials, 2020, 13: 2836
|
[8] |
Ameer M A, Fekry A M, El-Taib Heakal F. Electrochemical behavior of stainless steel in acidic environments: influence of chloride ions [J]. Electrochim. Acta, 2004, 50(1): 43
|
[9] |
Hu Y, Du J D, Li T, et al. Fe-based sacrificial anodes for cathodic protection of 17-4PH stainless steel [J]. Corros. Sci. Prot. Technol., 2016, 28: 391
|
[9] |
胡 毓, 杜见第, 李 婷 等. 铁基牺牲阳极对17-4PH不锈钢的阴极保护 [J]. 腐蚀科学与防护技术, 2016, 28: 391
|
[10] |
Yu D T, Wang R, Wu C L, et al. Iso-Material Manufactured 17-4PH stainless steel to enhance the nano-indentation, corrosion, and cavitation erosion behavior [J]. J. Mater. Eng. Perform., 2024, 33: 10134
|
[11] |
Meng L J, Long J Z, Yang H, et al. Femtosecond laser treatment for improving the corrosion resistance of selective laser melted 17-4PH stainless steel [J]. Micromachines, 2022, 13: 1089
|
[12] |
Yang Q B, Wang D G, Xiong Y H, et al. Mechanism of surface corrosion resistance of 304 stainless steel processed by nanosecond laser pulses [J]. Mater. Corros., 2023, 74: 551
|
[13] |
Zhu Q C, Sun W T, Yoo Y, et al. Enhance corrosion resistance of 304 stainless steel using nanosecond pulsed laser surface processing [J]. Surf. Interf., 2023, 42: 103479
|
[14] |
Shi T, Sun J Q, Wang X W, et al. Effect of trace water in ammonia on breaking passive film of stainless steel during gas nitriding [J]. Vacuum, 2022, 202: 111216
|
[15] |
Hou Y, Zhao J, Cao T S, et al. Improvement on the pitting corrosion resistance of 304 stainless steel via duplex passivation treatment [J]. Mater. Corros., 2019, 70: 1764
|
[16] |
Goodlet G, Faty S, Cardoso S, et al. The electronic properties of sputtered chromium and iron oxide films [J]. Corros. Sci., 2004, 46: 1479
|
[17] |
Sander G, Babu A P, Gao X, et al. On the effect of build orientation and residual stress on the corrosion of 316L stainless steel prepared by selective laser melting [J]. Corros. Sci., 2021, 179: 109149
|
[18] |
Gomes W P, Vanmaekelbergh D. Impedance spectroscopy at semiconductor electrodes: review and recent developments [J]. Electrochim. Acta, 1996, 41: 967
|
[19] |
Liu Z J, Cheng X Q, Li X G, et al. Application of PDM (point defect model) on 2205 duplex stainless steel [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 90
|
[19] |
刘佐嘉, 程学群, 李晓刚 等. 点缺陷模型在2205双相不锈钢中的应用 [J]. 中国腐蚀与防护学报, 2013, 33: 90
|
[20] |
Yang G M, Du Y F, Chen S Y, et al. Effect of secondary passivation on corrosion behavior and semiconducting properties of passive film of 2205 duplex stainless steel [J]. J. Mater. Res. Technol., 2021, 15: 6828
|
[21] |
Carmezim M J, Simões A M, Montemor M F, et al. Capacitance behaviour of passive films on ferritic and austenitic stainless steel [J]. Corros. Sci., 2005, 47: 581
|
[22] |
Biesinger M C, Payne B P, Grosvenor A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J]. Appl. Surf. Sci., 2011, 257: 2717
|
[23] |
Süzer S, Kadirgan F, Söhmen H M. XPS characterization of Co and Cr pigmented copper solar absorbers [J]. Solar Energy Mater. Solar Cells, 1999, 56: 183
|
[24] |
Wang Z C, Di-Franco F, Seyeux A, et al. Passivation-induced physicochemical alterations of the native surface oxide film on 316L austenitic stainless steel [J]. J. Electrochem. Soc., 2019, 166: C3376
|
[25] |
Awasthi A, Kumar D, Marla D. Understanding the role of oxide layers on color generation and surface characteristics in nanosecond laser color marking of stainless steel [J]. Opt. Laser Technol., 2024, 171: 110469
|
[26] |
Swayne M, Perumal G, Brabazon D. Mechanism for control of laser-induced stainless steel oxidation [J]. Adv. Mater. Interfaces, 2024, 11: 2300991
|
[27] |
Mroczkowska K M, Dzienny P, Budnicki A, et al. Corrosion resistance of AISI 304 stainless steel modified both femto- and nanosecond lasers [J]. Coatings, 2021, 11: 592
|
[28] |
Kamrunnahar M, Bao J E, Macdonald D D. Challenges in the theory of electron transfer at passive interfaces [J]. Corros. Sci., 2005, 47: 3111
|
[29] |
Cui C Y, Cui X G, Ren X D, et al. Surface oxidation phenomenon and mechanism of AISI 304 stainless steel induced by Nd: YAG pulsed laser [J]. Appl. Surf. Sci., 2014, 305: 817
|
[30] |
Wang S M, Tong H, Wang D, et al. Thermodynamic analysis and experimental study of masked corrosion protection of 304 stainless steel processed with nanosecond pulsed laser [J]. Metals, 2022, 12: 749
|
[31] |
Lynch B, Neupane S, Wiame F, et al. An XPS and ToF-SIMS study of the passive film formed on a model FeCrNiMo stainless steel surface in aqueous media after thermal pre-oxidation at ultra-low oxygen pressure [J]. Appl. Surf. Sci., 2021, 554: 149435
|
[32] |
Tang C G, Zhu J H. The measurement of interface strength of TiN coating/substrate by laser spallation [J]. Int. J. Refractory Met. Hard Mater., 1996, 14: 203
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|