Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1381-1389     CSTR: 32134.14.1005.4537.2024.353      DOI: 10.11902/1005.4537.2024.353
  研究报告 本期目录 | 过刊浏览 |
B10合金碱性刻蚀制备超双疏表面及其性能研究
徐亚程, 贾学远, 魏希望, 高荣杰()
中国海洋大学材料科学与工程学院 青岛 266100
Preparation and Properities of Superamphiphobic Surface on B10 Cu-alloy by Alkaline Etching
XU Yacheng, JIA Xueyuan, WEI Xiwang, GAO Rongjie()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
引用本文:

徐亚程, 贾学远, 魏希望, 高荣杰. B10合金碱性刻蚀制备超双疏表面及其性能研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1381-1389.
Yacheng XU, Xueyuan JIA, Xiwang WEI, Rongjie GAO. Preparation and Properities of Superamphiphobic Surface on B10 Cu-alloy by Alkaline Etching[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1381-1389.

全文: PDF(11904 KB)   HTML
摘要: 

通过(NH4)2S2O8和NaOH混合溶液刻蚀、160 ℃氧化和氟硅烷修饰,在B10合金基体上制备出超双疏表面,水和乙二醇的接触角分别达到158.1°和151.2°,滚动角分别接近0°和5°。采用多种方式对试样表面微观形貌和化学成分进行表征。电化学测试表明,以饱和甘汞电极作为参比电极时,和基体相比超双疏试样腐蚀电位正移至-0.204 V,腐蚀电流密度由1.192 × 10-5 A·cm-2下降至1.649 × 10-6 A·cm-2,缓蚀效率达到94.3%,耐蚀性能明显提升。自清洁性能和耐摩擦性能测试结果表明,超双疏试样具有优异的自清洁和良好的耐摩擦性能。

关键词 B10合金刻蚀法超双疏表面防腐    
Abstract

The superamphiphobic surface was prepared on B10 Cu-alloy by etching with (NH4)2S2O8 and NaOH mixed solution, followed by oxidation at 160 ℃ and fluorosilane modification. The microscopic morphology, chemical composition and electrochemical property of the superamphiphobic surface were characterized by means of Laser scanning confocal microscopy (LSCM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical means etc.Results show that the optimal preparation conditions were etching at 40 ℃ for 5 h, oxidation at 160 ℃ for 1 h, and 1.0% fluorosilane modification for 1 h. The superamphiphobic surface presents contact angle of water and ethylene glycol 158.1° and 151.2° and the rolling angle close to 0° and 5°, respectively. The electrochemical test shows that compared with the bare alloy, the free corrosion potential of the superamphiphobic alloy is shifted to -0.204 V versus calomel electrode used as the reference electrode, the corrosion current density decreases from 1.192 × 10-5 A·cm-2 to 1.649 × 10-6 A·cm-2, the corrosion suppression efficiency is 94.3%, and the corrosion resistance is significantly improved. Self-cleaning performance test indicates that the superamphiphobic surface possess excellent self-cleaning properties, and mechanical wear resistance test shows that the superamphiphobic surface can maintain a certain protective effect on the substrate over a long sliding distance.

Key wordsB10 Cu-alloy    etching    superamphiphobic surface    anti-corrosion
收稿日期: 2024-10-28      32134.14.1005.4537.2024.353
ZTFLH:  TG174  
基金资助:国家自然科学基金(U2441256)
通讯作者: 高荣杰,E-mail:dmh206@ouc.edu.cn,研究方向为海洋腐蚀与防护和阴极保护
Corresponding author: GAO Rongjie, E-mail: dmh206@ouc.edu.cn
作者简介: 徐亚程,男,2000年生,硕士生
图1  制备流程示意图
图2  超双疏试样耐摩擦实验示意图
LiquidSurface tension at 20 ℃ / mN·m-1Bare sampleSuperamphiphobic sample
Water72.8
Ethylene glycol47.7
表1  超双疏处理前后试样表面润湿性变化
图3  裸样与超双疏试样表面形貌
图4  裸样和超双疏试样的LSCM像
SampleSa / μmSdrRatio of surface area and cross-sectional area
Bare0.720.381.09
Superamphiphobic1.581.591.66
表2  裸样和超双疏试样表面粗糙度参数
图5  超双疏试样表面XRD图谱
图6  超双疏试样EDS面扫及各元素分布图像
图7  超双疏试样XPS图谱
图8  PFDTS修饰后超双疏表面红外图谱
图9  裸样和超双疏试样在3.5%NaCl溶液中的电化学阻抗图谱
SampleCPEfRf / kΩ·cm2Rct / kΩ·cm2Cdl / F·cm-2
Y0 / S·s nn
Bare5.301 × 10-40.73544.9811.224 × 1033.228 × 10-7
Superamphiphobic1.297 × 10-40.603416.5702.129 × 1041.020 × 10-7
表3  裸样和超双疏试样电化学拟合参数
图10  裸样和超双疏试样动电位极化曲线
图11  裸样(左)和超双疏试样(右)自清洁实验
图12  水和乙二醇在超双疏表面接触角随滑动距离的变化
[1] Gancarz T, Berent K. The applications of Cu substrate in liquid metal cooling systems [J]. Mater. Lett., 2018, 227: 116
[2] Hlina J, Reboun J, Hamacek A. Study of copper-nickel nanoparticle resistive ink compatible with printed copper films for power electronics applications [J]. Materials, 2021, 14: 7039
[3] Jin T Z, Zhang W F, Li N, et al. Surface characterization and corrosion behavior of 90/10 copper-nickel alloy in marine environment [J]. Materials, 2019, 12: 1869
[4] Sreenu A V, Rao M J, Sri T Y, et al. Copper-nickel alloy friction surfaced coating on steel substrates for marine applications [J]. Trans. Indian Inst. Met., 2024, 77: 1847
[5] Zhang D L, Liu R, Liu Y S, et al. Combined experimental and simulation study on corrosion behavior of B10 copper-nickel alloy welded joint under local turbulence [J]. J. Iron Steel Res. Int., 2023, 30: 1598
[6] Elragei O, Elshawesh F, Ezuber H M. Corrosion failure 90/10 cupronickel tubes in a desalination plant [J]. Desalin. Water Treat., 2010, 21: 17
[7] Li B Z, Zhang Z Q, Qiu Z H, et al. Insight to corrosion mechanism of 90/10 copper-nickel alloys under different sea depths [J]. Mater. Lett., 2021, 303: 130513
[8] Chobaomsup V, Metzner M, Boonyongmaneerat Y. Superhydrophobic surface modification for corrosion protection of metals and alloys [J]. J. Coat. Technol. Res., 2020, 17: 583
[9] Si W, Guo Z G. Enhancing the lifespan and durability of superamphiphobic surfaces for potential industrial applications: A review [J]. Adv. Colloid Interface Sci., 2022, 310: 102797
[10] Zhang B B, Yang G, Xu W C, et al. Hybrid superamphiphobic anti-corrosion coating with integrated functionalities of liquid repellency, self-cleaning, and anti-icing [J]. J. Mater. Sci. Technol., 2024, 184: 256
doi: 10.1016/j.jmst.2023.10.042
[11] Çakır M A, Yetim T, Yetim A F, et al. Superamphiphobic TiO2 film by sol-gel dip coating method on commercial pure titanium [J]. J. Mater. Eng. Perform., 2024, 33: 1472
[12] Chen T C, Yan W, Hongtao L, et al. Facile preparation of superamphiphobic phosphate-Cu coating on iron substrate with mechanical stability, anti-frosting properties, and corrosion resistance [J]. J. Mater. Sci., 2017, 52: 4675
[13] Wang H H, Lu H T, Zhang X. Super-robust superamphiphobic surface with anti-icing property [J]. RSC Adv., 2019, 9: 27702
doi: 10.1039/c9ra04997e
[14] Bai C Y, Hu C B, Zhang X, et al. A rapid two-step method for fabrication of superhydrophobic-superoleophobic nickel/copper alloy coating with self-cleaning and anticorrosion properties [J]. Colloid. Surf., 2022, 651A: 129635
[15] Zhu G X, Zhang X, He Y. Preparation of a superhydrophilic and superoleophobic sponge for continuous oil/water and oil/oil separation [J]. Appl. Surf. Sci., 2024, 670: 160644.
[16] Zhang J H, Xu Y C, Jia X Y, et al. Preparation and corrosion resistance of superamphiphobic surface on B10 Cu-alloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 909
[16] 张吉昊, 徐亚程, 贾学远 等. B10铜合金超双疏表面的制备及其性能研究 [J]. 中国腐蚀与防护学报, 2024, 44: 909
doi: 10.11902/1005.4537.2023.290
[17] Wen Q Y, Guo F, Peng Y B, et al. Simple fabrication of superamphiphobic copper surfaces with multilevel structures [J]. Colloid. Surf., 2018, 539A: 11
[18] Wan Y X, Chen M J, Liu W, et al. The research on preparation of superhydrophobic surfaces of pure copper by hydrothermal method and its corrosion resistance [J]. Electrochim. Acta, 2018, 270: 310
[19] Si W, Dai X, He S P, et al. Adjustable oil adhesion on superamphiphobic copper surfaces for controlled oil droplet transport [J]. J. Mater. Chem., 2024, 12A: 483
[20] Cai J Y, Wang T Y Y, Hao W, et al. Fabrication of superamphiphobic Cu surfaces using hierarchical surface morphology and fluorocarbon attachment facilitated by plasma activation [J]. Appl. Surf. Sci., 2019, 464: 140
[21] Qing Y Q, Yang C N, Zhao Q Q, et al. Simple fabrication of superhydrophobic/superoleophobic surfaces on copper substrate by two-step method [J]. J. Alloy. Compd., 2017, 695: 1878
[22] Mousavi S M A, Pitchumani R. A study of corrosion on electrodeposited superhydrophobic copper surfaces [J]. Corros. Sci., 2021, 186: 109420
[23] Turan M D. Optimization of selective copper extraction from chalcopyrite concentrate in presence of ammonium persulfate and ammonium hydroxide [J]. Int. J. Miner. Metall. Mater., 2019, 26: 946
[24] Eriksson M, Swerin A. Forces at superhydrophobic and superamphiphobic surfaces [J]. Curr. Opin. Colloid Interface Sci., 2020, 47: 46
[25] Liu K S, Jiang L. Metallic surfaces with special wettability [J]. Nanoscale, 2011, 3: 825
doi: 10.1039/c0nr00642d pmid: 21212900
[26] Saji V S. Recent progress in superhydrophobic and superamphiphobic coatings for magnesium and its alloys [J]. J. Magnes. Alloy., 2021, 9: 748
[27] Yin X B, Li Y Q, Gao R J. Preparation of superhydrophobic surface on copper substrate and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 93
[27] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2022, 42: 93
doi: 10.11902/1005.4537.2020.256
[28] Ou J F, Hu W H, Wang Y, et al. Construction and corrosion behaviors of a bilayer superhydrophobic film on copper substrate [J]. Surf. Interface Anal., 2013, 45: 698
[29] Li Y Q, Si W T, Gao R J. Preparation of superamphiphobic surface on Al-alloy and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 966
[29] 李育桥, 司伟婷, 高荣杰. 铝合金超双疏表面的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2022, 42: 966
doi: 10.11902/1005.4537.2021.339
[30] Li X Y, Yang K L, Yuan Z Q, et al. Recent advances on the abrasion resistance enhancements and applications of superhydrophobic materials [J]. Chem. Rec., 2023, 23: e202200298
[31] Zhang Y F, Ge D T, Yang S. Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness [J]. J. Colloid Interface Sci., 2014, 423: 101
[1] 陈丽, 冯佳, 孟凡帝, 王福会. 煤矸石改性环氧涂层的制备及其防腐性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 643-652.
[2] 曹京宜, 赵伊, 刘岩硕, 方志刚, 荆远, 李亮, 孟凡帝. 超疏水改性玄武岩/环氧涂层的制备及防护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1476-1484.
[3] 杨涛, 许磊, 王建春, 张明程, 姚彦博, 高国刚, 许文忠, 历长云. 油套管CO2 腐蚀和防护研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1134-1144.
[4] 张吉昊, 徐亚程, 贾学远, 高荣杰. B10铜合金超双疏表面的制备及其性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 909-917.
[5] 王汀, 高坤, 钟赛男, 张昭. 聚氨酯涂层的疏水改性研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 823-834.
[6] 司伟婷, 张吉昊, 高荣杰. AZ31B镁合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 381-388.
[7] 刘国. 关于埋地防腐层管道直流电位梯度(DCVG)测量与%IR计算的讨论[J]. 中国腐蚀与防护学报, 2024, 44(2): 512-518.
[8] 李丹鸿, 杨腾逊, 孙天翔, 李兴霖冒, 马程成, 张玥, 陈守刚. 改性SiO2 气凝胶聚氨酯复合涂层的制备及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 167-174.
[9] 张凯丽, 都俐俐, 谭军, 刘祥周, 马骥, 邱萍. 珊瑚簇状SiO2 超滑防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1319-1328.
[10] 凡玉方, 张亚飞, 尹刘森, 赵聪慧, 何艳宾, 张传祥. 碳点在金属防腐领域中的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[11] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[12] 孟凡帝, 高浩东, 刘莉, 崔宇, 刘叡, 王福会. 适用于深海压力-流体耦合环境的玄武岩有机防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[13] 邹文杰, 丁立, 张雪姣, 陈均. 环氧树脂/有机硅氧烷改性阳离子丙烯酸乳液复合涂层的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[14] 于芳, 王翔, 张昭. 纳米填料在环氧防腐涂层中的应用研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 220-230.
[15] 连衍成, 梁富源, 贺建超, 李瑨, 武俊伟, 冷雪松. 超疏水聚四氟乙烯材料制备工艺的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 231-241.